真三轴应力下注蒸汽过程中无烟煤煤体内温度场分布规律研究
Experimental study on temperature field distribution in anthracite during water vapour injection under triaxial pressure
-
摘要: 利用实验室自行组装的实验设备,进行了真三轴压力下单裂缝无烟煤煤体注蒸汽热响应特征研究实验。结果表明:预制裂缝面测点温度的升温过程具有明显的阶段性,可分为常温-沸点的升温阶段,温度为沸点的蒸汽相变阶段,高于沸点的升温阶段;且距离蒸汽进口端越远,在第2阶段保持的时间越长;在轴压侧压均为7.5 MPa,蒸汽压力为1 MPa的情况下,蒸汽注入无烟煤后,热量主要靠热传导方式使非裂隙面煤体升温;利用COMSOL对实验情况进行数值模拟,利用二分法的思路选取热传导系数,将模拟值与实验值进行对比分析,最终得到无烟煤的热传导系数。Abstract: In this paper, the thermal response characteristics of single fracture anthracite sample injected with hot steam under triaxial pressure were studied by using the experimental equipment assembled in the laboratory. The results show that the temperature rising process of the measuring points on the prefabricate fracture surface has obvious stages, which can be divided into temperature rise stage when the temperature is between room temperature and boiling point, the steam phase transition stage when the temperature is boiling point, and temperature rise stage when temperature is higher than boiling point heating stage. The farther away from the steam inlet, the longer the holding time in the second stage. When the axial pressure and confining pressure is 7.5 MPa and the steam pressure is 1 MPa, the heat mainly depends on the heat conduction mode to make the temperature of the coal body of non-fracture surface rise. COMSOL is used to simulate the experimental conditions, and the heat conduction coefficient is selected by dichotomy method. The simulation value is compared with the experimental value, and the thermal conductivity of anthracite is finally obtained.
-
-
[1] 赵阳升,冯增朝. 井上下联合注热抽采煤层气的方法:CN101503957[P].2009-08-12. [2] 李志强,鲜学福,隆晴明.不同温度应力条件下煤体渗透率实验研究[J].中国矿业大学学报,2009,38(4):523-527. LI Zhiqiang, XIAN Xuefu, LONG Qingming. Experiment study of coal permeability under different temperature and stress[J]. Journal of China University of Mining & Technology, 2009, 38(4): 523-527.
[3] 李志强,鲜学福.煤体渗透率随温度和应力变化的实验研究[J].辽宁工程技术大学学报(自然科学版),2009,28(S1):156-159. LI Zhiqiang, XIAN Xuefu. Study on experiment of coal permeability with temperature and stress changing[J]. Journal of Liaoning Technical University(Natural Science), 2009, 28(S1): 156-159.
[4] 胡耀青,赵阳升,杨栋,等.温度对褐煤渗透特性影响的试验研究[J].岩石力学与工程学报,2010,29(8):1585-1590. HU Yaoqing, ZHAO Yangsheng, YANG Dong, et al. Experimental study of effect of temperature on permeability characteristics of lignite[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1585-1590.
[5] 冯子军,万志军,赵阳升,等.高温三轴应力下无烟煤、气煤煤体渗透特性的实验研究[J].岩石力学与工程学报,2010,29(4):689-696. FENG Zijun, WAN Zhijun, ZHAO Yangsheng, et al. Experimental study of permeability of anthracite and gas coal masses under high temperature and triaxial stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(4): 689-696.
[6] 赵东,冯增朝,赵阳升.煤层瓦斯解吸影响因素的试验研究[J].煤炭科学技术,2010,38(5):43. ZHAO Dong, FENG Zengchao, ZHAO Yangsheng. Experiment study on affected factors to seam gas desorption law[J]. Coal Science and Technology, 2010, 38(5): 43.
[7] Feng Z, Zhao D, Zhao Y, et al. Effects of temperature and pressure on gas desorption in coal in an enclosed system: a theoretical and experimental study[J]. International Journal of Oil Gas & Coal Technology, 2016, 11(2): 193-203. [8] Zhao D, Zhao Y, Feng Z. Laboratory Experiment on coalbed-methane desorption influenced by water injection and temperature[J]. Journal of Canadian Petroleum Technology, 2011, 50(7-8): 24-33. [9] 林柏泉,李永,杨凯,等.H2O和CH4在煤表面竞争吸附机理[J].西安科技大学学报,2018,38(6):878. LIN Baiquan, LI Yong, YANG Kai, et al. Competitive adsorption mechanism of H2O and CH4 on coal surface[J]. Journal of Xi’an University of Science and Technology, 2018, 38(6): 878.
[10] 相建华,曾凡桂,梁虎珍,等.CH4/CO2/H2O在煤分子结构中吸附的分子模拟[J].中国科学 (地球科学),2014,44(7):1418-1428. XIANG Jianhua, ZENG Fangui, LIANG Huzhen, et al. Molecular simulation of the CH4/CO2/H2O adsorption onto the molecular structure of coal[J]. Scientia Sinica (Terrae), 2014, 44(7): 1418-1428.
[11] ZHOU Yanan, SUN Wenjing, WEI Chu, et al. Theoretical insight into the enhanced CH4 desorption via H2O adsorption on different rank coal surfaces[J]. Journal of Energy Chemistry, 2016, 25(4): 677-682. [12] 杨新乐,秘旭晴,张永利,等.注热联合井群开采煤层气运移采出规律数值模拟[J].吉林大学学报(地球科学版),2019,49(4):1100-1108. YANG Xinle, MI Xuqing, ZHANG Yongli, et al. Numerical simulation of migration and output law of coal-bed methane in heat injection combined well group mining[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 1100-1108.
[13] 杨新乐,任常在,张永利,等. 低渗透煤层气注热开采热-流-固耦合数学模型及数值模拟[J].煤炭学报,2013,38(6):1044. YANG Xinle, REN Changzai, ZHAGN Yongli, et al. Numerical simulation of the coupled thermal-fluid-solid mathematical models during extracting methane in low-permeability coal bed by heat injection[J]. Journal of China Coal Society, 2013, 38(6): 1044.
[14] 李惟慷,杨新乐,张永利,等.饱和蒸汽作用下煤体吸附甲烷运移产量规律试验研究[J].煤炭学报,2018,43(5):1343. LI Weikang, YANG Xinle, ZHANG Yongli, et al. Experimental study on migration yield law of coal-bed methane under the condition of saturated steam[J]. Journal of China Coal Society, 2018, 43(5): 1343.
[15] 杨凯.热蒸汽注热作用下的煤体热响应特性及其增透效果的研究[D].徐州:中国矿业大学,2019. [16] 冯子军,万志军.高温三轴应力下煤中甲烷生成特征及在注热开采瓦斯中应用[J].采矿与安全工程学报,2018,35(2):442-448. FENG Zijun, WAN Zhijun. Methane release under triaxial stressed coal at high temperature and its application in methane extracting by heat injection[J]. Journal of Mining & Safety Engineering, 2018, 35(2): 442-448.
[17] 马砺,魏高明,李珍宝,等.煤导热系数影响因素的实验研究[J].矿业安全与环保,2017,44(2):31-34. MA Li, WEI Gaoming, LI Zhenbao, et, al. Experimental study on influence factors of thermal conductivity of coal[J]. Mining Safety & Environmental Protection, 2017, 44(2): 31-34.
[18] 岳高伟,李豪君,王兆丰.基于二分法的松散煤体导热系数研究[J].矿业安全与环保,2015,42(1):19. YUE Gaowei, LI Haojun, WANG Zhaofeng, et, al. Study on heat conductivity coefficient of loose coal based on dichotomy[J]. Mining Safety & Environmental Protection, 2015, 42(1): 19-22.
-
期刊类型引用(2)
1. 尹建辉. 基于工业互联网架构的煤矿瓦斯智能抽采管控系统设计. 工矿自动化. 2024(02): 28-34 . 百度学术
2. 龚选平,周爱桃,范席辉,成小雨,朱立成. 基于“管网解算-遗传算法寻优”的瓦斯抽采管网优化技术. 煤矿安全. 2022(10): 120-125 . 本站查看
其他类型引用(3)
计量
- 文章访问数: 32
- HTML全文浏览量: 0
- PDF下载量: 8
- 被引次数: 5