超高密度电法在煤矿底板水动态监测中的应用
Application of ultra high density electrical technology in dynamic monitoring of coal mine floor water
-
摘要: 为提高煤矿开采过程中对底板水的监测能力,在现有的采场底板水监测系统的基础上进行改进。选用具有多通道数据采集和多装置数据联合反演的超高密度电法,最大程度上提高数据采集能力,提供更为丰富地质信息;反演过程中同时施加光滑约束与背景约束提高反演的稳定性,构造的反演方程引入正则化因子提高方程泛化能力,以此使反演效果更加精确。同时利用工作面巷道钻孔内埋设的电极、电缆,按一定的时间间隔进行监测获取不同时间工作面底板电阻率变化情况,以此推测地下体水运移情况;结合矿压周期变化及钻孔注浆资料分析底板水运移的原因,实现煤矿回采过程中底板水的动态监测。Abstract: In order to improve the monitoring ability of floor water during the mining process, the existing mining floor water monitoring system is improved. The ultra-high density resistivity method with multi-channel data acquisition and multi-device data joint inversion is selected to maximize the data acquisition ability and provide more abundant geological information. During the inversion process, smooth and background constraints are applied simultaneously to improve the stability of the inversion. The inversion equation is constructed to introduce a regularization factor to improve the generalization ability of the equation. At the same time, the electrodes and cables buried in the working face roadway boreholes are monitored at a certain interval to obtain the changes in resistivity of the working floor water at different time, and then to obtain the underground water movement. Combined with the periodic change of mine pressure and drilling grouting data, the paper analyzes the reasons of floor water movement, realizes the dynamic monitoring of floor water in the process of coal mining.
-
-
[1] 赵庆彪,赵昕楠,武强,等.华北型煤田深部开采底板“分时段分带突破”突水机理[J].煤炭学报,2015,40(7):1601-1607. ZHAO Qingbiao, ZHAO Xinan, WU Qiang, et al. Water burst mechanism of “divided period and section burst” at deep coal seam floor in North China type coalfield mining area[J]. Journal of China Coal Society, 2015, 40(7): 1601-1607.
[2] 张光德,周勇,刘生优,等.鄂尔多斯盆地煤田奥陶纪灰岩水害危险性分区研究[J].中国安全生产科学技术,2014,10(S1):237-242. ZHANG Guangde, ZHOU Yong, LIU Shengyou, et al.Research on water hazard zoning of Ordovician limestone in coalfield of Ordos Basin[J]. Journal of Safety Science and Technology, 2014, 10(S1): 237-242.
[3] 施龙青,翟培合,魏久传,等.三维高密度电法在底板水探测中应用[J].地球物理学进展,2009,24(2):733-736. SHI Longqing, ZHAI Peihe, WEI Jiuchuan, et al. Application of three-dimensional high density resistivity to detection of floor water[J]. Progress in Geophys, 2009, 24(2): 733-736.
[4] 翟培合.采场底板破坏及底板水动态监测系统研究[D].青岛:山东科技大学,2005. [5] 折京平.直流电法勘探的革命—超高密度电法[C]//陕西省地球物理学会成立20周年庆祝大会论文汇编.北京:中国地球物理学会,2007:243-246. [6] 折京平,徐卓. FlashRES64多通道、超高密度直流电法勘探反演系统[C]//中国地球物理学会第二十四届年会论文集.北京:中国地球物理学会,2008:250. [7] 罗安华.高密度电法在地下暗河探测中的应用—以石林诗玛溶洞为例[J].科学技术与工程,2019,19(27):81-87. LUO Anhua. The application of high-density resistivity method in the exploration of the underground river: the example of ShilinShimacave[J]. Science Technology and Engineering, 2019, 19(27): 81-87.
[8] 雷旭友,李正文,折京平.超高密度电阻率法在土洞、煤窑采空区和岩溶勘探中应用研究[J].地球物理学进展,2009,24(1):340-347. LEI Xuyou, LI Zhengwen, ZHE Jingping. Applaications and research of the high resolution vesistivity method in caves,minedvegion and explovation of Karst region[J].Progress Geophys, 2009, 24(1): 340-347.
[9] 孙林.超高密度电法在煤矿砂体探测中的应用[J].煤矿开采,2012,17(3):25-27. SUN Lin. Application of high density electrical method in detecting sandbody in coal mine[J]. Coal Mining Technology, 2012, 17(3): 25-27.
[10] 李俊杰,何建设,严家斌,等.超高密度电阻率法在隐伏断层探测中的应用[J].物探与化探,2016,40(3):624-628. LI Junjie, HE Jianshe, YAN Jiabin, et al. The application of ultra-high density resistivity method to the detection of buried fault[J]. Geophysical and Geochemical Exploration, 2016, 40(3): 624-628.
[11] 唐英杰,葛为中.井间电阻率CT在工程检测中的应用[J].CT理论与应用研究,2013,22(2):275-282. TANG Yingjie, GE Weizhong. The application of the well between resistivity CT method to the engineering testing[J]. CT Theory and Applications, 2013, 22(2):275-282.
[12] 尚耀军,何耀京,黄子龙.跨孔超高密度电法CT在岩溶勘察中的应用[J].工程地球物理学报,2013,10(4):545. SHANG Yaojun, HE Yaojing, HUANG Zilong. The application of Cross-hole super-high density resistivity method CT to Karst Carve exploration[J]. Chinese Journal of Engineering Geophysics, 2013, 10(4): 545.
[13] 冯德山,杨炳坤,戴前伟,等.超高密度电法全四极装置正反演[J].地球物理学进展,2014,29(2):718. FENG Deshan, YANG Bingkun, DAI Qianwei, et al. Thesimu-lation and inversion for the full-four-pole array of ultra-high density resistivity method[J]. Progress in Geophysics, 2014, 29(2): 718.
[14] 翟培合,张钊,高卫富.三维高密度电法煤矿探水技术改进[J].煤矿安全,2019,50(11):80-83. ZHAI Peihe, ZHANG Zhao, GAO Weifu. Improvement of water exploration in coal mine with three-dimensional high density electric method[J]. Safety in Coal Mines, 2019, 50(11): 80-83.
[15] 江沸菠,戴前伟,董莉.基于主成分-正则化极限学习机的超高密度电法非线性反演[J].地球物理学报,2015,58(9):3356-3369. JIANG Feibo, DAI Qianwei, DONG Li. Ultra-high density resistivity nonlinear inversion based on principal component-regularized ELM[J]. Chinese Journal of Geophysics, 2015, 58(9): 3356-3369.
[16] 冯德山,王鹏飞,杨炳坤.超高密度电法有限单元法正演与广义最小二乘反演[J].中国有色金属学报,2014,24(3):793-800. FENG Deshan, WANG Pengfei, YANG Bingkun. Finite element forward simulation and least square generalized inversion of ultra-high density resistivity method[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(3): 793-800.
[17] 张风达,申宝宏.深部煤层底板破坏特征分析[J].采矿与安全工程学报,2019,36(1):44-50. ZHANG Fengda, SHEN Baohong. Failure characteristics analysis of deep coal seam floor[J]. Journal of Mining & Safety Engineering, 2019, 36(1): 44-50.
-
期刊类型引用(23)
1. 赵建光,刘振华,李海龙,郭智. 厚煤层复合顶板强矿压沿空掘巷围岩应力动态分布规律研究. 采矿技术. 2025(01): 64-71 . 百度学术
2. 靳苏平. 厚煤层沿空留巷“煤—支护体”组合承载结构力学特性分析. 能源与环保. 2024(02): 256-261+268 . 百度学术
3. 刘春记. 切顶卸压及复合支护体系在沿空留巷中的应用. 煤炭与化工. 2024(05): 14-18 . 百度学术
4. 张俊虎,陈振江,高贤成,张磊,李建华,邓鹏江. 深部大采高工作面沿空留巷围岩控制技术. 煤矿安全. 2024(07): 118-126 . 本站查看
5. 李壮,刘明,王勇,赵志强. 基于精细化建模与有限差分计算的采空区围岩形变数值分析研究. 采矿技术. 2024(04): 95-99 . 百度学术
6. 陈磊,涂智凌. 窄煤柱工作面巷旁充填沿空留巷控制技术及应用. 煤炭技术. 2023(02): 81-85 . 百度学术
7. 孙志锋. 龙马煤矿切顶卸压爆破炮孔间距研究. 能源技术与管理. 2023(02): 39-40+91 . 百度学术
8. 张云宏,张艳宏. 煤矿回采巷道围岩应力演化规律及超前支护可行性研究. 能源与环保. 2023(08): 284-291+297 . 百度学术
9. 雷雨龙,李赵岩. 矿井综放工作面沿空留巷技术及矿压显现规律探析. 内蒙古煤炭经济. 2023(13): 34-36 . 百度学术
10. 翟春宝. 神东矿区上湾煤矿沿空留巷技术应用. 煤炭工程. 2023(S1): 37-42 . 百度学术
11. 魏振宇. 综采面切顶沿空留巷采空区帮控制技术研究. 山东煤炭科技. 2022(02): 70-71+74 . 百度学术
12. 杨俊文. 浅谈厚煤层开采切顶卸压的煤柱控制技术. 煤. 2022(03): 85-87 . 百度学术
13. 徐筝峥,杨玉贵,陈勇,侯珊珊,陈晓虎. 深部大采高沿空留巷围岩应力分布与变形规律研究. 煤矿安全. 2022(05): 59-66 . 本站查看
14. 王龙. 综采工作面切顶卸压沿空成巷无煤柱开采技术的应用. 能源与节能. 2022(05): 167-169 . 百度学术
15. 朱永,殷帅峰,李昊. 沿空留巷不同切顶参数卸压效果的数值模拟. 华北科技学院学报. 2022(02): 56-62 . 百度学术
16. 魏昌彪. 沿空留巷切顶卸压技术研究. 机械管理开发. 2022(04): 113-115 . 百度学术
17. 侯晋刚. 薄及中厚煤层沿空留巷中切顶卸压技术的应用探析. 西部探矿工程. 2022(08): 129-131+134 . 百度学术
18. 马文伟. 大采高坚硬顶板工作面巷道围岩控制技术. 煤矿安全. 2022(08): 94-103 . 本站查看
19. 张国辉,邢永. 综放工作面切顶卸压沿空留巷开采技术应用. 煤矿现代化. 2022(05): 5-8 . 百度学术
20. 高翔. 临汾宏大煤矿矸石充填开采沿空留巷围岩稳定性控制技术. 山东煤炭科技. 2022(08): 90-92 . 百度学术
21. 范宁潇. 古城煤矿N1303工作面切顶卸压沿空留巷技术应用. 山东煤炭科技. 2022(11): 49-51 . 百度学术
22. 朱伟,王玉浩,王天一. 沿空巷道水力切顶围岩控制数值模拟研究. 能源技术与管理. 2022(06): 1-3+13 . 百度学术
23. 张荣刚,王帅锋,袁显湖,崔东亮. 沿空留巷两回采巷道分区域围岩控制技术研究. 煤炭工程. 2022(S1): 37-43 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 14
- HTML全文浏览量: 0
- PDF下载量: 18
- 被引次数: 26