PSO-SVM模型在掘进工作面突出预警系统中的应用
Application of PSO-SVM model in outburst warning system of heading face
-
摘要: 为实现掘进工作面煤与瓦斯突出风险快速、准确预警,借助工作面瓦斯涌出特征与突出“三要素”之间变化关系建立了含地应力系数、瓦斯体积分数及瓦斯涌出系数等参数的实时预警指标体系;将SVM、PSO 2种算法结合构建了PSO-SVM突出预警模型,界定了突出预警等级标签的划分原则;在此基础上融合Spark大数据平台开发了掘进工作面突出预警系统,系统包括模型管理、风险识别及Spark配置等8个模块。以贵州某矿掘进工作面监测监控系统为数据源,筛选其中1 059组预警指标及对应预警等级标签导入数据挖掘模型进行智能化学习及训练,并将系统应用于该掘进工作面突出风险预警。运行结果表明突出预警模型测试集的预测精度为92%,系统能在工作面突出动力现象发生前22 min准确预警。Abstract: In order to realize rapid and accurate warning of tunneling faces gas outburst risk, based on the relationship between the characteristics of gas emission in working face and the “three elements” of outburst, a real-time early warning index system including in-situ stress coefficient, gas concentration and gas emission coefficient was established. We combine the SVM and PSO algorithms to build the PSO-SVM outburst warning model, defines the classification principles of outburst warning labels. On this basis,?an outburst warning system of heading face is developed by integrating Spark big data platform. The system includes 8 modules, such as model management, risk identification and Spark configuration. Taking the monitoring and control system of heading face in a mine in Guizhou as the data source, 1059 groups of early-warning indicators and corresponding early-warning grade labels were selected and imported into the data mining model for intelligent learning and training, and the system was applied to the outburst risk early-warning of the heading face. The operation results show that the prediction accuracy of the outburst warning model test set is 92%, and the system can accurately predict the outburst dynamic phenomenon 22 min before the occurrence of the working face.
-
-
[1] 李绍泉.近距离煤层群煤与瓦斯突出机理及预警研究[D].北京:中国矿业大学(北京),2013. [2] 姜福兴,尹永明,朱权洁.基于掘进面应力和瓦斯浓度动态变化的煤与瓦斯突出预警试验研究[J].岩石力学与工程学报,2014,33(S2):3581. JIANG Fuxing, YIN Yongming, ZHU Quanjie. Experimental study of precaution technology of heading face coal and gas outburst based on dynamic changes of stress and methane concentration[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 3581.
[3] 宋国良.大水头矿井东113工作面瓦斯涌出及其特征研究[D].西安:西安科技大学,2012. [4] 李希建,周炜光.基于瓦斯峰谷比值法的炮掘工作面突出危险性预测[J].煤炭学报,2012,37(S1):104. LI Xijian, ZHOU Weiguang. The risk forecast of coal and gas outburst on blasting-working-face by the method of gas peak-to-valley ratio[J]. Journal of China Coal Society, 2012, 37(S1): 104.
[5] 肖丹,李刚.采掘工作面瓦斯异常涌出灰色预警模型的建立和应用[J].煤矿安全,2015,46(8):149-151. XIAO Dan, LI Gang. Establishment of gray early warning model for gas abnormal emission at extracting coal face and its application[J]. Safety in Coal Mines, 2015, 46(8): 149-151.
[6] 邓明.煤与瓦斯突出早期辨识与实时预警技术研究[D].淮南:安徽理工大学,2010. [7] 关维娟,张国枢,赵志根.煤与瓦斯突出多指标综合辨识与实时预警研究[J].采矿与安全工程学报,2013, 30(6):922-929. GUAN Weijuan, ZHANG Guoshu, ZHAO Zhigen. Multi-index comprehensive identification and real-time early warning of coal and gas outburst[J]. Journal of Mining and Safety Engineering, 2013, 30(6): 922-929.
[8] 陈亮.掘进工作面煤与瓦斯突出实时监测预警技术研究[D].徐州:中国矿业大学,2016. [9] 杨艳国,穆永亮,秦洪岩.工作面瓦斯浓度时间序列特征挖掘与预警应用[J].中国安全科学学报,2018,28(3):120-125. YANG Yanguo, MU Yongliang, QIN Hongyan. Research on time series characteristics of gas concentration at working face and application of them to early warning[J]. Chinese Journal of Safety Science, 2018, 28(3): 120-125.
[10] 宋爽.掘进工作面煤与瓦斯突出实时预警技术研究[D].西安:西安科技大学,2015. [11] 刘海波,钱伟,王福忠.基于粗糙集与粒子群优化支持向量机的瓦斯突出预测模型[J].中国科学技术大学学报,2019,49(2):87-92. LIU Haibo, QIAN Wei, WANG Fuzhong. Gas outburst prediction based on rough set and particle swarm optimization support vector machine[J]. Journal of University of Science and Technology of China, 2019, 49(2): 87-92.
[12] 国家矿井安全监察局.防治煤与瓦斯突出细则[M]北京:煤炭工业出版社,2009. [13] 煤矿瓦斯抽采达标暂行规定[A]. [14] 省人民政府办公厅关于深刻吸取黔西南州安龙县广隆矿井“12.17”重大煤与瓦斯突出事故教训进一步加强矿井安全生产工作的紧急通知[A]. [15] 任沛中.基于Spark的大数据资源共享平台的设计与实现[D].北京:北京交通大学,2019. -
期刊类型引用(4)
1. 郑亚炜,康健婷,康天合,晏嘉欣,汪家畅,张慧慧. 温度冲击作用参数对泥岩甲烷吸附解吸特性的影响正交试验研究. 煤矿安全. 2024(09): 48-59 . 本站查看
2. 张俊杰,袁新立,张汉桥,陈毅,韩国庆,年国兴. 水分对煤力学性能及冲击能量指数的影响研究. 煤矿安全. 2023(07): 26-33 . 本站查看
3. 尹家宽,黄虎威. 青龙寺煤矿5~(-2)煤力学特性测试. 能源技术与管理. 2022(04): 15-17+25 . 百度学术
4. 阎俞佐,康健婷,郑亚炜,晏嘉欣,张连昆. 温度冲击作用对无烟煤甲烷吸附-解吸特性影响的试验研究. 煤炭科学技术. 2022(09): 93-103 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 18
- HTML全文浏览量: 0
- PDF下载量: 9
- 被引次数: 10