• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

H2S水溶液对低阶煤渗透性的影响实验研究

曹玉召, 郝慧丽, 王海超, 加那提·叶尔肯, 吾木尔江·达吾列提

曹玉召, 郝慧丽, 王海超, 加那提·叶尔肯, 吾木尔江·达吾列提. H2S水溶液对低阶煤渗透性的影响实验研究[J]. 煤矿安全, 2021, 52(9): 29-35.
引用本文: 曹玉召, 郝慧丽, 王海超, 加那提·叶尔肯, 吾木尔江·达吾列提. H2S水溶液对低阶煤渗透性的影响实验研究[J]. 煤矿安全, 2021, 52(9): 29-35.
CAO Yuzhao, HAO Huili, WANG Haichao, Jianati Yeerken, Wumuerjiang Dawulieti. Experimental study on effect of H2S aqueous solution on permeability of low-rank coal[J]. Safety in Coal Mines, 2021, 52(9): 29-35.
Citation: CAO Yuzhao, HAO Huili, WANG Haichao, Jianati Yeerken, Wumuerjiang Dawulieti. Experimental study on effect of H2S aqueous solution on permeability of low-rank coal[J]. Safety in Coal Mines, 2021, 52(9): 29-35.

H2S水溶液对低阶煤渗透性的影响实验研究

Experimental study on effect of H2S aqueous solution on permeability of low-rank coal

  • 摘要: 为研究H2S水溶液对低阶煤渗透性的影响,选取准东煤田五彩湾煤矿(WCW)和吐哈煤田沙尔湖煤矿(SEH)的低阶煤样品,开展了H2S水溶液酸化前后平行层理方向和垂直层理方向煤样的孔隙度和渗透率测试、核磁共振测试及扫描电镜观测等对比实验。研究结果表明:H2S水溶液能够与孔、裂隙中的矿物发生溶蚀反应,导致酸化后煤的孔隙度增加、孔径分布变化及孔、裂隙连通性增强,且孔、裂隙中的煤粉和黏土矿物等物质能够通过裂隙随酸液运移出去,从而导致煤的渗透性得到改善;初始孔隙度越大,裂隙越发育,孔、裂隙连通性越好,渗透性越强的煤样H2S水溶液酸化后的扩容、增渗效果越明显。
    Abstract: In order to study the effect of H2S solution to the permeability of low-rank coal, we select low-rank coal sample from Wucaiwan Coal Mine(WCW) of eastern Junggar Basin coalfield and Shaerhu Coal Mine(SEH) of Tuha coalfield. The porosity and permeability at the parallel and vertical stratifications were compared before and after the acidizing experiments using various methods including the tests of porosity and permeability, Nuclear magnetic resonance(NMR) and scanning electron microscopy (SEM). The results show that H2S solution can react with the minerals in pores and fractures, lead to the increase of porosity, the change of pore size distribution, the enhancement of connectivity between pores and fractures. At the same time, some materials such as coal powder and clay minerals transport out through fractures with H2S solution, resulting in improving the permeability of coal. The larger initial porosity, the more fractures developed, the better connectivity between pore and fracture, and the better permeability, the effective of H2S solution to expansion and permeability is more obvious after acidification.
  • [1] 刘见中,孙海涛,雷毅,等.煤矿区煤层气开发利用新技术现状及发展趋势[J].煤炭学报,2020,45(1):258-267.

    LIU Jianzhong, SUN Haitao, LEI Yi. et al. Current situation and development trend of coalbed methane development and utilization technology in coal mine area[J]. Journal of China Coal Society, 2020, 45(1): 258.

    [2] 薄冬梅,赵永军,姜林.煤储层渗透性研究方法及主要影响因素[J].油气地质与采收率,2008,15(1):18.

    BO Dongmei, ZHAO Yongjun, JIANG Lin. Research method and main influencing factors of coal reservoir permeability[J]. Petroleum Geology and Recovery Efficiency, 2008, 15(1): 18.

    [3] 赵文秀,李瑞,乌效鸣,等.利用酸化技术提高煤储层渗透率的室内初探[J].中国煤层气,2012,9(1):10.

    ZHAO Wenxiu, LI Rui, WU Xiaoming, et al. Preliminary indoor experiments on enhancing permeability rate of coal reservoir by using acidification technology[J]. China Coalbed Methane, 2012, 9(1): 10.

    [4] GAO Jinfang, XING Huilin, Luc Turner, et al. Pore-scale numerical investigation on chemical stimulation in coal and permeability enhancement for coal seam gas production[J]. Transport in Porous Media, 2017, 116(1): 335-351.
    [5] 赵博,文光才,孙海涛,等.煤岩渗透率对酸化作用响应规律的试验研究[J].煤炭学报,2017,42(8):2019.

    ZHAO Bo, WEN Guangcai, SUN Haitao, et al. Experimental study on response law of permeability of coal to acidification[J]. Journal of China Coal Society, 2017, 42(8): 2019.

    [6] 李全中.多组分酸对不同煤阶煤增透机理研究[D].焦作:河南理工大学,2014.
    [7] 刘炎杰.低渗透煤储层酸化改造实验研究[D].焦作:河南理工大学,2016.
    [8] Turner L G, Steel K M. A study into the effect of cleat demineralisation by hydrochloricacidon the permeability of coal[J]. Journal of Natural Gas Science and Engineering, 2016, 11(3): 931-942.
    [9] 倪小明,李全中,王延斌,等.多组分酸对不同煤阶煤储层化学增透实验研究[J].煤炭学报,2014,39(S2):436-440.

    YAN Xiaoming, LI Quanzhong, WANG Yanbin, et al. Experimental study on chemical permeability improvement of different rank coal reservoirs using multi-component acid[J]. Journal of China Coal Society, 2014, 39(S2): 436-440.

    [10] Ebrahim A A S, Garrouch A A, Lababidi H M S. Automating sandstone acidizing using a rule-based system[J]. Journal of Petroleum Exploration and Production Technology, 2014, 4(4): 381-396.
    [11] Balucan R D, Turner L G, Steel K M. Acid-induced mineral alteration and its influence on the permeability and compressibility of coal[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 973-987.
    [12] Jing Zhenhua, Balucan R D, Underschultz J R, et al. Chemical stimulation for enhancing coal seam permeability: Laboratory study into permeability variation and coal structure examination[J]. International Journal of Coal Geology, 2019, 219: 103375.
    [13] 焦春林,傅雪海,葛燕燕,等.我国煤矿瓦斯中H2S异常矿井的分布特征[J].黑龙江科技学院学报,2013, 23(4):375.

    JIAO Chunlin, FU Xuehai, GE Yanyan, et al. Distribution characteristics of H2S anomaly area of coal mine gas in China[J]. Journal of Heilongjiang Institute of Science and Technology, 2013, 23(4): 375.

    [14] WANG Haichao, CHENG Xiaoqian, TAIN Jijun, et al. Permeability enhancement of low rank coal through acidization using H2S solution: an experimental study in the Kuqa-Bay Coalfield, Xinjiang, China[J]. Journal of Petroleum Science and Engineering, 2020, 185: 1-15.
    [15] 程晓茜,田继军,王海超,等.H2S水溶液对低阶煤孔隙结构影响的实验研究[J].煤炭学报,2020,45(4):1436-1444.

    CHENG Xiaoxi, TIAN Jijun, WANG Haichao, et al. Experimental research on the effect of H2S solution on pore structure of low-rank coal[J]. Journal of China Coal Society, 2020, 45(4): 1436-1444.

    [16] Wang K, Zang J, Wang G D, Zhou A T. Anisotropic permeability evolution of coal with effective stress variation and gas sorption: model development and analysis[J]. International Journal of Coal Geology, 2014, 130(15): 53-65.
    [17] WANG Chenlin, ZHANG Xiaodong. Distribution rule ofthe insitu stress state and its influence on the permeability of a coal reservoir in the southern Qinshui Basin, China[J]. Arabian Journal of Geosciences, 2018, 11(19): 1-8.
    [18] Sander R, Pan Z J, Connell L D. Laboratory measurement of low permeability unconventional gas reservoir rocks: a review of experimental methods[J]. Journal of Natural Gas Science and Engineering, 2017, 37: 248.
    [19] 郑贵强,凌标灿,郑德庆,等.核磁共振实验技术在煤孔径分析中的应用[J].华北科技学院学报,2014,11(4):1.

    ZHENG Guiqiang, LING Biaocan, ZHENG Deqing, et al. The application of nuclear magnetic resonance on analyzing aperture in coal[J]. Journal of North China Institute of Science and Technology, 2014, 11(4): 1.

    [20] 李海波,朱巨义,郭和坤.核磁共振T2谱换算孔隙半径分布方法研究[J].波谱学杂志,2008,25(2):273.

    LI Haibo, ZHU Juyi, GUO Hekun. Methods for calculating pore radius distribution in rock from NMR T2 spectra[J]. Chinese Journal of Magnetic Resonance, 2008, 25(2): 273.

    [21] 张亚蒲,何应付,杨正明,等.核磁共振技术在煤层气储层评价中的应用[J].石油天然气学报,2010,32(2):277-279.

    ZHANG Yapu, HE Yingfu, YANG Zhengming, et al. Application of nuclear magnetic resonance technique in evaluation of coalbed methane reservoir[J]. Journal of Oil and Gas Technology, 2010, 32(2): 277-279.

    [22] 王海超.煤储层裂隙特征、声波速度及与渗透性关系研究[D].焦作:河南理工大学,2014.
    [23] 何雨丹,毛志强,肖立志,等.核磁共振T2分布评价岩石孔径分布的改进方法[J].地球物理学报,2005, 48(2):373-378.

    HE Yudan, MAO Zhiqiang, XIAO Lizhi, et al. An improved method of using NMR T2 distribution to evaluate pore size distribution[J]. Chinese Journal of Geophysics, 2005, 48(2): 373-378.

    [24] 李胜,罗明坤,范超军,等.基于核磁共振和低温氮吸附的煤层酸化增透效果定量表征[J].煤炭学报,2017,42(7):1748-1756.

    LI Sheng, LUO Mingkun, FAN Chaojun, et al. Quantitative characterization of the effect of acidification in coals by NMR and low-temperature nitrogen adsorption[J]. Journal of China Coal Society, 2017, 42(7): 1748-1756.

    [25] LI Teng, WU Caifang, LIU Qiang. Characteristics of coal fractures and the influence of coal facies on coalbed methane productivity in the South Yanchuan Block, China[J]. Journal of Natural Gas Science and Engineering, 2015, 22: 625-632.
    [26] 孟祥喜.水岩作用下岩石损伤演化规律基础试验研究[D].青岛:山东科技大学,2018.
    [27] 郑司建,姚艳斌,蔡益栋,等.准噶尔盆地南缘低煤阶煤储层可动流体及孔径分布特征[J].煤田地质与勘探,2018,46(1):56-60.

    ZHENG Sijian, YAO Yanbin, CAI Yidong, et al. Characteristics of movable fluid and pore size distribution of low rank coals reservoir in southern margin of Junggar Basin[J]. Coal Geology & Exploration, 2018, 46(1): 56-60.

    [28] 谢松彬,姚艳斌,陈基瑜,等.煤储层微小孔孔隙结构的低场核磁共振研究[J].煤炭学报,2015,40(S1):170-176.

    XIE Songbin, YAO Yanbin, CHEN Jiyu, et al. Research of micro-pore structure in coal reservoir using low-field NMR[J]. Journal of China Coal Society, 2015, 40(S1): 170-176.

    [29] 王凯,乔鹏,王壮森,等.基于二氧化碳和液氮吸附、高压压汞和低场核磁共振的煤岩多尺度孔径表征[J].中国矿业,2017,26(4):146-152.

    WANG Kai, QIAO Peng, WANG Zhuangsen, et al. Multiple scale pore size characterization of coal based on carbon dioxide and liquid nitrogen adsorption, high-pressure mercury intrusion and low field nuclear magnetic resonance[J]. China Mining Magazine, 2017, 26(4): 146-152.

    [30] 孔星星,肖佃师,蒋恕,等.联合高压压汞和核磁共振分类评价致密砂岩储层[J].天然气工业,2020,40(3):38-47.

    KONG Xingxing, XIAO Dianshi, JIANG Shu, et al. Application of the combination of high-pressure mercury injection and nuclear magnetic resonance to the classification and evaluation of tight sandstone reservoirs[J]. Natural Gas Industry, 2020, 40(3): 38-47.

    [31] PAN Jienan, WANG Haichao, WANG Kai, et al. Relationship of fractures in coal with lithotype and thickness of coal lithotype[J]. Geomechanics and Engineering, 2014, 6(6): 613-624.
  • 期刊类型引用(4)

    1. 郑亚炜,康健婷,康天合,晏嘉欣,汪家畅,张慧慧. 温度冲击作用参数对泥岩甲烷吸附解吸特性的影响正交试验研究. 煤矿安全. 2024(09): 48-59 . 本站查看
    2. 张俊杰,袁新立,张汉桥,陈毅,韩国庆,年国兴. 水分对煤力学性能及冲击能量指数的影响研究. 煤矿安全. 2023(07): 26-33 . 本站查看
    3. 尹家宽,黄虎威. 青龙寺煤矿5~(-2)煤力学特性测试. 能源技术与管理. 2022(04): 15-17+25 . 百度学术
    4. 阎俞佐,康健婷,郑亚炜,晏嘉欣,张连昆. 温度冲击作用对无烟煤甲烷吸附-解吸特性影响的试验研究. 煤炭科学技术. 2022(09): 93-103 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  52
  • HTML全文浏览量:  0
  • PDF下载量:  21
  • 被引次数: 10
出版历程
  • 发布日期:  2021-09-19

目录

    /

    返回文章
    返回