基于X-ray CT与FIB-SEM的无烟煤孔裂隙发育特征
Characteristics of pores and fractures in anthracite coal based on X-ray CT and FIB-SEM
-
摘要: 以沁水盆地南部无烟煤为研究对象,基于X-ray CT和FIB-SEM扫描成像试验,构建了无烟煤孔裂隙网络结构模型并提取了关键特征参数,进而对无烟煤孔裂隙发育特征与连通关系开展了定量研究。结果表明:沁水盆地南部无烟煤以孔径小于50 nm的中孔为主,大孔数量较低,显微裂隙和割理对孔隙体积具有较高的贡献;孔隙截面以不规则形状为主,毛管阻力较大;孔隙具有较好的连通性,连通路径较丰富,有利于气体运移和产出;随孔裂隙发育尺度的减小,孔裂隙连通性和渗透率随之降低;对连通性起主要作用的是中孔、显微裂隙和割理;显微裂隙和割理提高了无烟煤微米尺度、毫米尺度孔裂隙的连通性和渗透性,无烟煤纳米尺度以中孔连通为主,限制了无烟煤整体连通性。Abstract: Taking the anthracite coal in the southerm of Qinshui Basin as the research object, the pore-fracture network models of anthracite coal were established and the key parameters of pore-fracture network were extracted based on the X-ray CT (computed tomography) and focused ion beam scanning electron microscopy(FIB-SEM) imaging experiments. Then, the characteristics of pores and fractures in anthracite coal and their connection relationships were quantitative studied. The results show that the pores of anthracite coal in the southern Qinshui Basin are mainly mesopores with pore size less than 50 nm. Macropore content in anthracite coal is small, and microscopic fractures and cleats make a great contribution to pore volume in anthracite coal. The cross-section is predominantly irregular in shape, which means that the capillary resistance is large. The connectivity of the pores is well with multiple connected paths, which is beneficial to gas migration and output. With the decrease of the scale of pores and fractures, the connectivity and permeability of pore and fracture decrease. Mesopores, microscopic fractures, and cleats play an important role in the connectivity of anthracite coal. The connectivity and permeability of micrometer and millimeter scale pores and fractures in anthracite coal were improved by microscopic fractures and cleats, while the connectivity of nanoscale pores in anthracite coal was dominated by mesopores, which limited the connectivity of anthracite coal.
-
-
[1] 桑树勋,刘世奇,王文峰,等.深部煤层CO2地质存储与煤层气强化开发有效性理论及评价[M].北京:科学出版社,2019. [2] 刘世奇,桑树勋,杨恒林,等.沁南东区块3#煤层构造煤发育对渗透率的影响[J].煤矿安全,2020,51(4):167-171. LIU Shiqi, SANG Shuxun, YANG Henglin, et al. Characteristics of tectonic coal in 3# coal seam of eastern Qinnan Block and its influence on permeability[J]. Safety in Coal Mines, 2020, 51(4): 167-171.
[3] Liu Shiqi, Sang Shuxun, Liu Huihu, et al. Growth characteristics and genetic types of pores and fractures in a high-rank coal reservoir of the southern Qinshui Basin[J]. Ore Geology Reviews, 2015, 64(10): 140. [4] 孙家广,赵贤正,桑树勋,等.基于光学显微观测的煤层裂隙发育特征、成因及其意义:以沁水盆地南部3#煤层为例[J].断块油气田,2016,23(6):738. SUN Jiaguang, ZHAO Xianzheng, SANG Shuxun, et al. Development characteristics, origins and significance of coal seam fractures under optical microscope: taking coal seam 3# in southern Qinshui Basin as an example[J]. Fault-Block Oil & Gas Field, 2016, 23(6): 738.
[5] 杨延辉,刘世奇,桑树勋,等.基于三维空间表征的高阶煤连通孔隙发育特征[J].煤炭科学技术,2016,44(10):70-76. YANG Yanhui, LIU Shiqi, SANG Shuxun, et al. Interconnected pore development features of high rank coal based on 3D space characteristics[J]. Coal Science and Technology, 2016, 44(10): 70-76.
[6] 章飞,张攀.鄂尔多斯盆地低阶煤孔隙瓦斯微观渗流特征[J].煤矿安全,2020,51(8):17-22. ZHANG Fei, ZHANG Pan. Characteristics of methane micro-seepage in low-rank coal pores of Ordos Basin[J]. Safety in Coal Mines, 2020, 51(8): 17-22.
[7] 姚艳斌,刘大锰,蔡益栋,等.基于NMR和X-CT的煤的孔裂隙精细定量表征[J].中国科学(D辑):地球科学,2010,40(11):1598-1607. [8] LIU Shiqi, SANG Shuxun, WANG Geoff, et al. FIB-SEM and X-ray CT characterization of interconnected pores in high-rank coal formed from regional metamorphism[J]. Journal of Petroleum Science and Engineering, 2017, 148: 21-31. [9] 马勇,钟宁宁,程礼军,等.渝东南两套富有机质页岩的孔隙结构特征-来自FIB-SEM的新启示[J].石油实验地质,2015,37(1):109-116. MA Yong, ZHONG Ningning, CHENG Lijun, et al. Pore structure of two organic-rich shales in southeastern Chongqing Area: insight from focused ion beam scanning electron microscope (FIB-SEM)[J]. Petroleum Geology & Experiment, 2015, 37(1): 109-116.
[10] 马勇,钟宁宁,黄小艳,等.聚集离子束扫描电镜(FIB-SEM)在页岩纳米级孔隙结构研究中的应用[J].电子显微学报,2014,3322(3):251-256. MA Yong, ZHONG Ningning, HUANG Xiaoyan, et al. The application of focused ion beam scanning electron microscope(FIB-SEM) to the nanometer-sized pores in shales[J]. Journal of Chinese Electron Microscopy Society, 2014, 33(3): 251-256.
[11] 王朋飞,吕鹏,姜振学,等.中国海陆相页岩有机质孔隙发育特征对比-基于聚焦离子束氦离子显微镜(FIB-HIM)技术[J].石油实验地质,2018,40(5):739-748. WANG Pengfei, LV Peng, JIANG Zhenxue, et al. Comparison of organic matter pores of marine and continental facies shale in China: based on focused ion beam helium ion microscopy(FIB-HIM)[J]. Petroleum Geology & Experiment, 2018, 40(5): 739-748.
[12] 郑柏平,马收先.华北石炭-二叠系高分辨率层序地层单元划分及对比[J].中国煤炭地质,2008,20(S1):11-15. ZHENG Baiping, MA Shouxian. Division and correlation of north China Permo-Carboniferous based on high resolution sequence stratigraphy[J]. Coal Geology of China, 2008, 20(S1): 11-15.
[13] 韩德馨,杨起.中国煤田地质学:中国聚煤规律(下册)[M].北京:煤炭工业出版社,1980. [14] 刘焕杰,秦勇,桑树勋.山西南部煤层气地质[M].徐州:中国矿业大学出版社,1998. [15] 刘洪林,李贵中,王广俊,等.沁水盆地煤层气地质特征与开发前景[M].北京:石油工业出版社,2009. [16] LIU Shiqi, SANG Shuxun, MA Jingheng, et al. Three-dimensional digitalization modeling characterization of pores in high-rank coal in the southern Qinshui Basin[J]. Geosciences Journal, 2019, 23(1): 175-188. [17] 方辉煌.基于数字岩石物理技术的无烟煤CO2-ECBM流体连续过程数值模拟研究[D].徐州:中国矿业大学,2020. [18] SILIN Dmitriy, PATZEK Tad. Pore space morphology analysis using maximal inscribed spheres[J]. Physica A: Statistical Mechanics and its Applications, 2006, 371(2): 336-360. -
期刊类型引用(19)
1. 马治青. 含水层上方煤层开采过程中覆岩移动及底板岩层损伤演化特征分析. 采矿技术. 2025(01): 1-5 . 百度学术
2. 陈太勇,刘国磊,常笑笑,吴延成,马秋峰,郝喜庆,赵成博. 采场正断层损伤活化机理与特征. 煤矿安全. 2025(02): 126-136 . 本站查看
3. 孙文斌,田殿金,马诚,薛彦超,杨灿,朱开鹏. 侧限条件下断层破碎岩体变形及渗流侵蚀特性. 煤田地质与勘探. 2025(01): 193-203 . 百度学术
4. 王红梅,宁明诚,鲁海峰,周恒心. 断层影响下煤层开采突水风险流固耦合数值模拟研究. 煤炭技术. 2024(01): 180-184 . 百度学术
5. 赵伟,刘洲,王琦,李文江. 陈四楼煤矿地面定向钻孔超前区域治理底板岩溶水害技术. 西安科技大学学报. 2024(01): 84-93 . 百度学术
6. 朱登奎,张兴华,郁静静,谢彪,雷倩茹,王泉栋. 不同倾角断层对底板透水影响规律研究. 煤炭技术. 2024(03): 184-188 . 百度学术
7. 杨超,姜淑印. PPGF-灰岩胶结面剪切力学特性试验研究. 金属矿山. 2024(04): 37-45 . 百度学术
8. 杨晨,唐羽晗,孙远军. 伊犁一矿5号煤层1504E工作面底板水害分析与防治. 内蒙古煤炭经济. 2024(10): 39-41 . 百度学术
9. 杨鹏. 煤层底板渐进破坏与渗流演化数值模拟研究. 晋控科学技术. 2024(04): 48-51 . 百度学术
10. 李泽京,王勇,王一,王进,王婉璐,陈国峰. 基于层次分析法的某煤矿水文地质类型评价. 地下水. 2024(05): 24-26 . 百度学术
11. 李萍,姜旭,段建华,丛琳. 基于微震监测的工作面底板破坏曲面提取方法. 煤炭工程. 2024(11): 140-148 . 百度学术
12. 邢茂林. 煤层底板区域治理后断层突水原因及探讨. 煤矿安全. 2023(03): 204-211 . 本站查看
13. 邢茂林. 桃园煤矿F_(28)断层突水原因及堵水技术. 煤炭技术. 2023(06): 156-160 . 百度学术
14. 许延春,苗葳,宛志红,叶精灵,李磊,邢晁瑞. 底板加固改造工作面“双关键层”控水模型. 煤矿安全. 2023(05): 63-71 . 本站查看
15. 孙文斌,杨辉,赵金海,薛延东,张晓波,刘倩慧. 断层突水灾变演化过程划分基础试验研究. 煤炭科学技术. 2023(07): 118-128 . 百度学术
16. 宋团. 干河煤矿2-301工作面底板突水机理及治理技术研究. 煤炭与化工. 2023(09): 72-75 . 百度学术
17. 杨峰,李明鑫,殷聪,江昱卓,张加齐. 充填开采底板隔水层损伤破坏特征及稳定性控制. 煤炭技术. 2023(11): 23-29 . 百度学术
18. 林征,王来斌,刘梦琪. 基于GIS与熵值法的煤层底板突水危险性评价. 河南科技. 2023(23): 66-69 . 百度学术
19. 刘倩,许光泉,石怡煊,刘晓娟,徐立佳,何文乔. 采区岩溶水文地质条件综合分析及疏放性评价. 宿州学院学报. 2023(12): 44-49 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 35
- HTML全文浏览量: 0
- PDF下载量: 35
- 被引次数: 25