基于机器学习的高应力软岩巷道支护抗毁能力预测
Prediction of anti-destructive ability of high stress soft rock roadway support based on machine learning
-
摘要: 为了避免传统预测方法在高应力软岩巷道支护抗毁能力预测时出现的问题,提出了基于机器学习的高应力软岩巷道支护抗毁能力预测方法;首先根据岩石物理力学性质,分析软岩强度特性,同时在支护构建模型支持下,分析软岩巷道围岩流变特性,由此研究高应力软岩巷道特性;然后依据软岩塑性变形机理,确定弹性区、塑性硬化区、塑性软化区和塑性流动区对应关系,并计算软岩周围岩层向临空区域运动的合力,由此确定最佳支护时间;最后使用机器学习方法将高应力软岩巷道支护结构简化为葫芦结构模型,并计算外界作用力大小,确定高应力软岩巷道支护结构质量参数矩阵。通过对比3种常规方法可知,该方法在3种不同破坏强度下预测精准度均较高。Abstract: In order to avoid the problems of the traditional prediction methods in the prediction of the support anti-destruction ability of the high stress soft rock roadway, a prediction method of the support anti-destruction ability of the high stress soft rock roadway based on machine learning is proposed. Firstly, according to the physical and mechanical properties of the rock, the strength characteristics of the soft rock are analyzed. At the same time, under the support of support construction model, the rheological characteristics of surrounding rock of soft rock roadway are analyzed, and the characteristics of high stress soft rock roadway are studied. Then, according to the plastic deformation mechanism of soft rock, the corresponding relationship among elastic zone, plastic hardening zone, plastic softening zone and plastic flow zone is determined, and the resultant force of surrounding rock movement to the free area is calculated to determine the optimal support time. The machine learning method simplifies the support structure of high stress soft rock roadway into a gourd structure model, calculates the external force, and determines the support structure quality parameter matrix of high stress soft rock roadway. By comparing the three conventional methods, it can be seen that the prediction accuracy of this method is higher under three kinds of different failure strength.
-
-
[1] 孙利辉,杨本生,孙春东,等.深部软岩巷道底鼓机理与治理试验研究[J].采矿与安全工程学报,2017,34(2):235-242. SUN Lihui, YANG Bensheng, SUN Chundong, et al. Experimental research on mechanism and controlling of floor heave in deep soft rock roadway[J]. Journal of Mining and Safety Engineering, 2017, 34(2): 235-242.
[2] 贾宝新,温学伟,陈浩,等.强膨胀软岩巷道锚网喷架联合支护技术研究[J].安全与环境学报,2017,6(6):917-922. JIA Baoxin, WEN Xuewei, CHEN Hao, et al. Technical engineering approach to the anchor net spray frame composite support for the strong swelling soft rock roadway[J]. Journal of Safety and Environment, 2017(6): 917-922.
[3] 杨长清,吴非,钟帅,等.浅埋破碎软弱围岩明挖大断面隧道施工技术研究[J].工程建设与设计,2018(13):204. YANG Changqing, WU Fei, ZHONG Shuai, et al. Study on construction technology of large section tunnel with shallow excavation and broken soft surrounding rock[J]. Construction & Design for Project, 2018(13): 204.
[4] 张振全.深部高应力软岩巷道围岩应力分析及支护研究[J].煤炭技术, 2018,37(6):49-51. ZHANG Zhenquan. Stress analysis and support research on surrounding rock of deep high stress soft rock roadway[J]. Coal Technology, 2018, 37(6): 49-51.
[5] 刘永忠.“内-外复合承载结构”支护技术在软岩巷道围岩控制中的应用[J].煤炭工程,2017,49(6):47. LIU Yongzhong. Application of inner-outer composite bearing structure supporting technology in surrounding rock control of soft rock roadway[J]. Coal Engineering, 2017, 49(6): 47-49.
[6] 刘迅,纪欣卓,苗凯军.深部充填沿空巷道护巷煤(岩)体受力特征及稳定性分析[J].采矿与安全工程学报,2020,37(1):32-39. LIU Xun, JI Xinzhuo, MIAO Kaijun. Stress characteristics and stability analysis of coal(rock) body in deep back-filling gob side entry[J]. Journal of Mining and Safety Engineering, 2020,37(1): 32-39.
[7] 余伟健,吴根水,刘泽,等.煤-岩-锚组合锚固体单轴压缩试验及锚杆力学机制[J].岩石力学与工程学报,2020,39(1):57-68. YU Weijian, WU genshui, LIU Ze, et al. Uniaxial compression test of coal-rock-bolt anchorage body and mechanical mechanisms of bolts[J]. Journal of Rock Mechanics and Engineering, 2020, 39(1): 57-68.
[8] 余伟健,吴根水,安百富,等.裂隙岩体巷道大变形特征与稳定性控制[J].采矿与安全工程学报,2019,36(1):103-111. YU Weijian, WU genshui, AN Baifu, et al. Large deformation characteristics and stability control of roadway with fractured rock mass[J]. Journal of Mining and Safety Engineering, 2019, 36(1): 103-111.
[9] 余伟健,吴根水,刘海,等.薄煤层开采软弱煤岩体巷道变形特征与稳定控制[J].煤炭学报,2018,43(10):2668-2678. YU Weijian, WU genshui, LIU Hai, et al. Deformation characteristics and stability control of soft coal-rock mining roadway in thin coal seam[J]. Journal of China Coal Society, 2018, 43(10): 2668-2678.
[10] 王卫军,袁超,余伟健,等.深部大变形巷道围岩稳定性控制方法研究[J].煤炭学报,2016,41(12):2921. WANG Weijun, YUAN Chao, YU Weijian, et al. Stability control method of surrounding rock in deep roadway with large deformation[J]. Journal of China Coal Society, 2016, 41(12): 2921.
[11] 黄庆享,郭强,曹健,等.软岩大变形巷道破坏机理与支护技术[J].西安科技大学学报,2019,39(6):934. HUANG Qingxiang, GUO Qiang, CAO Jian, et al. Failure mechanism and support technology in soft rock large deformation roadway[J]. Journal of Xi’an University of Science and Technology, 2019, 39(6): 934.
[12] 刘学生,谭云亮,宁建国.锚杆支护煤巷围岩变形速度的混沌预测研究[J].采矿与安全工程学报,2014, 31(3):385-389. LIU Xuesheng, TAN Yunliang, NING Jianguo. Chaotic prediction of surrounding rock deformation speed in coal roadway supported by bolt[J]. Journal of Mining and Safety Engineering, 2014, 31(3): 385-389.
[13] 马鑫民,杨仁树,王茂源,等.基于工程类比煤巷支护智能预测系统与应用[J].中国矿业,2016,25(2):85-90. MA Xinmin, YANG Renshu, WANG Maoyuan, et al. Intelligent forecast system of roadway support and it’s application based on engineering analogy[J]. China Mining, 2016, 25(2): 85-90.
[14] 王宏伟,武旭,陈瀚,等.神经网络在支护优选及变形预测中的应用[J].矿业研究与开发,2016,36(6):25-29. WANG Hongwei, WU Xu, CHEN Han, et al. Application of neural network in optimal selection of support patterns and deformation prediction[J]. Mining Research and Development, 2016, 36(6): 25-29.
[15] 裴洪,胡昌华,司小胜,等.基于机器学习的设备剩余寿命预测方法综述[J].机械工程学报,2019,55(8):1-13. PEI Hong, HU Changhua, SI Xiaosheng, et al. Review of machine learning based remaining useful life prediction methods for equipment[J]. Journal of Mechanical Engineering, 2019, 55(8): 1-13.
[16] 王晓卿,阚甲广,焦建康.高应力软岩巷道底鼓机理及控制实践[J].采矿与安全工程学报,2017,34(2):214-220. WANG Xiaoqing, JIA Guang, JIAO Jiankang. Mechanism of floor heave in the roadway with high stress and soft rock and its control practice[J]. Journal of Mining and Safety Engineering, 2017, 34(2): 214-220.
[17] 艾达,卢雪磊,高阳,等.基于机器学习的HEVC快速帧内预测算法研究进展[J].现代电子技术,2018,41(18):178-181. AI Da, LU Xuelei, GAO Yang, et al. Advances in research of HEVC fast intra-frame prediction algorithm based on machine learning[J]. Modern Electronic Technology, 2018, 41(18): 178-181.
[18] 李克文,周广悦,路慎强,等.一种基于机器学习的有利区评价新方法[J].特种油气藏,2019,26(3):7. LI Kewen, ZHOU Guangyue, LU Shenqiang, et al. A new method for favorable zone evaluation based on machine learning[J]. Special Oil and Gas Reservoir, 2019, 26(3): 7-11.
[19] 殷齐浩,李春廷,李廷春,等.富水软岩巷道稳定性控制技术研究[J].矿业安全与环保,2020,47(1):12. YIN Qihao, LI Chunting, LI tingchun, et al. Study on stability control technology of water-rich soft rock roadway[J]. Mining Safety and Environmental Protection, 2020, 47(1): 12.
[20] 屈世甲,李鹏.基于支架工作阻力大数据的工作面顶板矿压预测技术研究[J].矿业安全与环保,2019,46(2):92-97. QU Shijia, LI Peng. Research on prediction technology of roof mining pressure based on big data of support resistance[J]. Mining Safety and Environmental Protection, 2019, 46(2): 92-97.
[21] 王雷,王琦,黄玉兵,等.深部高应力穿层巷道变形机制及支护技术研究[J].采矿与安全工程学报,2019, 36(1):112-121. WANG Lei, WANG Qi, HUANG Yubing, et al. Study on deformation mechanism and support technology of deep cross-measure roadway under high stress[J]. Journal of Mining and Safety Engineering, 2019, 36(1): 112-121.
[22] 张文康,刘旦龙,孙大增.城郊煤矿深部巷道围岩破坏机理及主动控制技术[J].矿业安全与环保,2020, 47(3):76-81. ZHANG Wenkang, LIU Danlong, SUN Dazheng. Failure mechanism and active control technology of deep roadway in Chengjiao Coal Mine[J]. Mining Safety and Environmental Protection, 2020, 47(3): 76-81.
[23] 汤建泉,霍雪峰,杨华富,等.沿空切顶成巷段巷道围岩变形规律研究[J].矿业安全与环保,2020,47(1):40-44. TANG Jianquan, HUO Xuefeng, YANG Huafu, et al. Study on deformation law of surrounding rock in gob-side entry retaining formed by roof fracturing[J]. Mining Safety and Environmental Protection, 2020, 47(1): 40-44.
-
期刊类型引用(3)
1. 张鹏,巩仲斌,贺丽峰,单栋梁,刘芳,薛旭辉,李啸天,孙亮,王春来. 富家凹煤业坚硬顶板巷道水力压裂技术研究. 煤炭工程. 2023(03): 68-72 . 百度学术
2. 张万春,郭布民,孔鹏,杜建波,陈玲,王春林. 柿庄南煤层气重复压裂裂缝形态反演及效果分析评价. 非常规油气. 2022(01): 119-128 . 百度学术
3. 王君,蒲磊,何新宇,曹麟阁,梁文威,梁薇薇,成斌,徐铭江. 多生物特征融合的矿井人员身份识别. 科技通报. 2021(03): 44-49 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 47
- HTML全文浏览量: 0
- PDF下载量: 16
- 被引次数: 4