采煤机割煤产尘及粉尘运移规律的数值模拟
Numerical analysis on migration of shearer-generated dust in mechanized coal mining workface
-
摘要: 以晋能控股煤业集团轩岗煤电有限公司刘家梁矿2214综采工作面采煤机割煤产尘为研究对象,建立粉尘运移数学模型和综采工作面物理模型,确定边界条件,应用fluent软件进行数值模拟,分析了采煤机截割产尘运移分布规律。研究结果表明:双滚筒采煤机的前滚筒割煤下落高度较后滚筒大,且前滚筒割煤产尘受设备布置和强湍流气流的影响大,导致其迅速横向运移至采煤机司机工作区域,其中5 μm以下致病粉尘运移现象严重,是引起采煤机司机易患尘肺病的重要因素。通过对2214综采工作面进行现场测尘,数值模拟结果与现场实测相吻合。Abstract: The operating environment is polluted so seriously by shearer-generated dust that the shearer operators are one of most susceptible workers of coal pneumoconiosis in the mechanized coal mining workface of underground coal mines. In this work, we take 2214 mechanized coal mining workface of Liujialiang Coalmine in Xuangang Coal and Power Company Limited of Jinneng Holding Equipment Manufacturing Group as an example, and study the migration law of shearer-generated dust by numerical simulation. The results indicate that the falling height of the dust produced by the front cutting drum is more than that by the back one of the dual drum coal mining machine. The influence of equipment layout and strong turbulent air flow on the migration of coal dust produced by the front cutting drum is so great that they are quickly transported horizontally to the working area of the shearer operators, especially pathogenic dust below 5 μm, which is an important factor that causes the shearer operators to suffer from pneumoconiosis easily. The numerical simulation results are consistent with the field measurement of workface 2214.
-
Keywords:
- shearer-generated dust /
- shearer operator /
- dust migration /
- pulvation airflow /
- pneumoconiosis
-
-
[1] 孟雨.浅谈我国职业病防治存在的问题及对策[J].卫生软科学,2011,25(9):589-592. MENG Yu. Discuss on the problems and countermeasures of occupational disease prevention in China[J]. Soft Science of Health, 2011, 25(9): 589-592.
[2] 李强,蒋承林,翟果红.我国煤炭行业尘肺病现状分析及防治对策[J].中国安全生产科学技术,2011,7(4):148-151. LI Qiang, JIANG Chenglin, ZHAI Guohong. Analysis and countermeasures on the situation of coal industry pneumoconiosis in China[J]. Journal of Safety Science and Technology, 2011, 7(4): 148-151.
[3] 王兵建,李远知.教学三矿机采面割煤产尘运移与控制技术[J].煤矿安全,2018,49(3):68-71. WANG Bingjian, LI Yuanzhi. Migration and control technology of shearer-generated dust in mechanized coal mining working face of Jiaoxue No.3 Coalmine[J]. Safety in Coal Mines, 2018, 49(3): 68-71.
[4] Lu Zhongliang, Ren Jingzhang, Wang Hongli. Numerical simulation and trumpet optimization of the inside inhaling and outside pressing dust collector[J]. AIP ADVANCES, 2020, 10(6): 065138.1-065138.6 [5] 时训先,蒋仲安,周姝嫣,等.综采工作面粉尘分布规律的实验研究[J].煤炭学报,2008,33(10):1117. SHI Xunxian, JIANG Zhong’an, ZHOU Shuyan, et al. Experimental study on dust distribution regularity of fully mechanized mining face[J]. Journal of China Coal Society, 2008, 33(10): 1117.
[6] 周刚,张琦,白若男,等.大采高综采面风流-呼尘耦合运移规律CFD数值模拟[J].中国矿业大学学报,2016,45(4):684-693. ZHOU Gang, ZHANG Qi, BAI Ruonan, et al. CFD simulation of air-respirable dust coupling migration law at fully mechanized mining face with large mining height[J]. Journal of China University of Mining & Technology, 2016, 45(4): 684-693.
[7] Ting Ren, Zhongwei Wang, Graeme Cooper. CFD modelling of ventilation and dust flow behaviour above an underground bin and the design of an innovative dust mitigation system[J]. Tunnelling and Underground Space Technology, 2014, 41: 241-254. [8] 韩占忠,王敬,兰小平,等.流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2008. [9] 孙一坚,沈恒根.工业通风[M].北京:中国建筑工业出版社,2010. [10] 李万平.计算流体力学[M].武汉:华中科技大学出版社,2004. [11] 谢伟松,陶建华.三维水动力学模型高精度差分格式和解法研究[J].天津大学学报,2003(5):590-594. XIE Weisong, TAO Jianhua. Study of high accuracy difference scheme and solution methodof a 3-D hydrodynamic model[J]. Journal of Tianjin University(Science and Technology), 2003(5): 590-594.
[12] 王晓玲.精馏塔板上流体三维流场及传质的模拟[D].天津:天津大学,2003. [13] 许晓平,周洲.多面体网格在CFD中的应用[J].飞行力学,2009,27(6):87. XU Xiaoping, ZHOU Zhou. Application of polyhedral mesh in CFD[J]. Flight Dynamics, 2009, 27(6): 87.
[14] 左前明,崔向飞,朱良,等.大采高综采工作面风流流动规律数值模拟分析[J].煤炭技术,2015,34(6):169-171. ZUO Qianming, CUI Xiangfei, ZHU Liang, et al. Numerical simulation analysis of airflow distribution law in large mining height fully-mechanized face[J]. Coal Technology. 2015,34(6): 169-171.
[15] 杨明东.综采面偏W型通风系统瓦斯运移规律研究[D].淮南:安徽理工大学,2014. [16] 刘启海,林玉池,于连生.基于改进R-R分布的现场激光粒度仪反演算法[J].光电工程,2009,36(6):68-71. LIU Qihai, LIN Yuchi, YU Liansheng. Inversion algorithm of field laser particle size analyzer based on improved R-R distribution[J]. Opto-Electronic Engineering, 2009, 36(6): 68-71.
[17] Alderliesten M. Mean particle diameters. part VII. the rosin-rammler size distribution: physical and mathematical properties and relationships to moment-ratio defined mean particle diameters[J]. Particle & Particle Systems Characterization, 2013, 30(3): 244-257. [18] 赵振保.采煤机截割粉尘扩散运移规律的试验研究[J].北京理工大学学报,2011,31(4):383-386. ZHAO Zhenbao. Experimental research on diffusion and mitigation law of dust cut generated by coal shearer[J]. Transactions of Beijing Institute of Technology, 2011, 31(4): 383-386.
[19] 李晓豁.截割粉尘成因与控制方法研究[D].徐州:中国矿业大学出版社,2003. -
期刊类型引用(1)
1. 陶恩生. 不同围压下煤岩力学三轴试验研究. 煤矿现代化. 2024(05): 14-19 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 33
- HTML全文浏览量: 0
- PDF下载量: 22
- 被引次数: 4