单位等量解吸焓对煤与瓦斯突出综合作用假说的补充
Supplement of unit equal desorption enthalpy to comprehensive action hypothesis of coal and gas outburst
-
摘要: 基于平顶山五矿中阶原生煤和构造煤的系列等温吸附实验数据计算温度-压力-吸附方程(TPAE)参数。通过TPAE方程计算结果证实,吸附是可以自发进行的放热反应,解吸是无法自发进行的吸热反应;热力学计算证明当吸附量增加,其单位等量解吸焓却按幂函数关系下降;原生煤单位等量解吸焓是构造煤单位等量解吸焓的2.2倍;煤靠吸收环境能量进行瓦斯解吸、降低温度、升高压力;而瓦斯压力升高和温度降低都有利于其余煤增加吸附以达到新的瓦斯气液平衡;煤吸附量持续增加带来的直接后果是其单位等量解吸焓的持续下降;环境能量输入与瓦斯内能蓄积转移显示互为诱因、互相强化,直至新一波的环境能量输入,诱发吸附瓦斯解吸达到足够高的压差梯度发生瓦斯突出;瓦斯突出是按准备、启动、发展和终止的先后次序发生;准备与启动的分段节点是有无工程活动,启动与发展的分段节点是圈闭瓦斯的煤壁是否被突破,发展与终止的分段节点是构造煤的吸附量是否接近于0。
-
关键词:
- 温度-压力-吸附方程 /
- 单位等量解吸焓 /
- 瓦斯内能 /
- 吸附解吸 /
- 煤与瓦斯突出
Abstract: Temperature-pressure-adsorption equation (TPAE) parameters were calculated based on a series of isothermal adsorption experimental data from medium rank normal coal and deformed coal in Pingdingshan No.5 mine. The results of TPAE show that the adsorption is a spontaneous exothermic reaction, and the desorption is not a spontaneous endothermic reaction. The thermodynamic calculation proves that when the adsorption amount increases, its unit isosteric enthalpy of desorption decreases according to the power function relationship. The unit isosteric enthalpy of desorption of normal coal is 2.2 times that of deformed coal. Coal absorbs environmental energy to desorb gas, reduce temperature, and increase pressure; rising pressure and lowing temperature are promoting the adsorption of coal, which results in a new gas liquid equilibrium. The direct consequence of the continuous increase of coal adsorption is the continuous decline of its unit isosteric enthalpy of desorption. The ambient energy input and the gas internal energy accumulation and transfer show mutual inducement and mutual reinforcement, until the new wave of environmental energy input, induce gas desorption to reach a high pressure gradient sufficiently to cause gas protrusion. The preparation, initiation, development, and termination of gas outburst are sequential processes. The segment node for separating outburst preparation and initiation is whether there is human engineering activity. The segment node for separating initiation and development is whether the wall of the system is broken. The segment node for separating development and termination is whether the adsorption amount of the deformed coal is close to zero. -
-
[1] 梁跃强,解学才,徐德宇,等.煤与瓦斯突出的预测及地质因素研究进展[J].煤炭技术,2017,36(3):168. LIANG Yueqiang, XIE Xuecai, XU Deyu, et al. Research advance of coal and gas outburst prediction and geological factors[J]. Coal Technology, 2017, 36(3): 168-170.
[2] 马国龙,张庆华,赵彬.寺河煤矿煤与瓦斯突出主控因素分析及防治对策[J].煤炭科学技术,2014,42(3):49-52. MA Guolong, ZHANG Qinghua, ZHAO Bin. Analysis on major control factors of coal and gas outburst in Sihe Mine and prevention countermeasures[J]. Coal Science and Technology, 2014, 42(3): 49-52.
[3] 张友谊,黄战峰,余贵军,等.地质条件影响下的煤与瓦斯突出特征及防治对策[J].煤炭科学技术,2013, 41(12):39-42. ZHANG Youyi, HUANG Zhanfeng, YU Guijun, et al. Coal and gas outbursts characteristics and countermeasures under the influence of geological conditions[J]. Coal Science and Technology, 2013, 41 (12): 39-42.
[4] 张仕和.煤与瓦斯突出机理的探讨[J].中国煤炭,2006,32(6):38-39. ZHANG Shihe. Discussion on the extrusion law of gas[J]. China Coal, 2006, 32(6): 38-39.
[5] 李军涛.煤与瓦斯突出的规律和特征[J].中国煤炭,2005,31(7):41-42. LI Juntao. Law and features of coal and gas outburst[J]. China Coal, 2005, 31(7): 41-42.
[6] 刘彦伟,陈攀,魏建平.煤层地质构造对煤与瓦斯突出的控制作用[J].煤炭科学技术,2010,38(1):24. LIU Yanwei, CHEN Pan, WEI Jianping. Seam geological structure to control role of coal and gas outburst[J]. Coal Science and Technology, 2010, 38(1): 24.
[7] 郝吉生,袁崇孚,张子戌.构造煤及其对煤与瓦斯突出的控制作用[J].焦作工学院学报(自然科学版),2000(6): 403-406. HAO Jisheng, YUAN Chongfu, ZHANG Zixu. The tectonic coal and its control on coal and gas outburst[J]. Journal of Jiaozuo Institute of Technology(Natural Science Edition), 2000(6): 403-406.
[8] 张子敏,张玉贵.大平煤矿特大型煤与瓦斯突出瓦斯地质分析[J].煤炭学报,2005,30(2):137-140. ZHANG Zimin, ZHANG Yugui. Investigation into coal-gas outburst occurred in Daping Coalmine, by using theories of gas-geology[J]. Journal of China Coal Society, 2005, 30(2): 137-140.
[9] 高保彬,米翔繁,张瑞林.深部矿井煤岩瓦斯复合动力灾害研究现状与展望[J].煤矿安全,2013,44(11):175-178. GAO Baobin, MI Xiangfan, ZHANG Ruilin. Research status and prospect of compound dynamic disaster of deep mining in coal mine[J]. Safety in Coal Mines, 2013, 44 (11): 175-178.
[10] 李铁,蔡美峰,王金安,等.深部开采冲击地压与瓦斯的相关性探讨[J].煤炭学报,2005,30(5):562-567.LI Tie, CAI Meifeng, WANG Jinan, et al. Discussion on relativity between rockburst and gas in deep exploitation[J]. Journal of China Coal Society, 2005, 30(5): 562-567. [11] 邵强,王恩营,王红卫,等.构造煤分布规律对煤与瓦斯突出的控制[J].煤炭学报,2010,35(2):250-254. SHAO Qiang, WANG Enying, WANG Hongwei, et al. Control to coal and gas outburst of tectonic coal distribution[J]. Journal of China Coal Society, 2010, 35(2): 250-254.
[12] 简阔,傅雪海,张玉贵.构造煤煤层气解吸阶段分析及最大瞬时解吸量计算[J].煤炭科学技术,2015,43(4): 57-62. JIAN Kuo, FU Xuehai, ZHANG Yugui. Analysis of coalbed methane desorption stage and calculation of maximum instantaneous desorption amount[J]. Coal Science and Technology, 2015, 43(4): 57-62.
[13] 卢守青,撒占友,张永亮,等.高阶原生煤和构造煤等量吸附热分析[J].煤矿安全,2019,50(4):169-172. LU Shouqing, SA Zhanyou, ZHANG Yongliang, et al. Analysis on isosteric adsorption heat of high-rank normal coal and deformed coal[J]. Safety in Coal Mines, 2019, 50(4): 169-172.
[14] 李东,郝静远.无机膜气体分离的温度-压力-渗透率方程及其在吸附问题上的应用[J].膜科学与技术,2018,38(4):127-131. LI Dong, HAO Jingyuan. Temperature-pressure-permeability equation of gas separation in inorganic membrane and its application on adsorption[J]. Membrane Science and Technology, 2018, 38(4): 127-131.
[15] 李东,张学梅,郝静远,等.基于吸附验证的煤层气含量的可行性研究[J].煤炭科学技术,2018,46(9):27-31. LI Dong, ZHANG Xuemei, HAO Jingyuan, et al. Feasibility study of coalbed methane content test based on adsorption approved[J]. Coal Science and Technology, 2018, 46(9): 27-31.
[16] 李东,郝静远,张学梅,等.温度-压力-吸附方程回归样本集的建立与计算-以陕西焦坪崔家沟煤为例[J].非常规油气,2018,5(2):46-49. LI Dong, HAO Jingyuan, ZHANG Xuemei, et al. Establishment and calculation of regression sample set of temperature pressure adsorption equation: a case study of Cuijiagou Coal in Jiaoping, Shaanxi Province[J]. Unconventional Oil and Gas, 2018, 5(2): 46-49.
[17] 李东,张学梅,郝静远,等.温度-压力-吸附方程在计算煤岩等量吸附焓的应用[J].化工进展,2019,38(s1): 104-109. LI Dong, ZHANG Xuemei, HAO Jingyuan, et al. Application of temperature-pressure-adsorption equation in calculating the adsorption enthalpy of coal seam[J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 104-109.
[18] 张学梅,李东.变温变压下煤层气吸附量的预测[J]. 化工进展,2018,37(s1):63-66. ZHANG Xuemei, LI Dong. Prediction of coalbed methane adsorption capacity under variable temperature and pressure[J]. Chemical Industry and Engineering Progress, 2018, 37(s1): 63-66.
[19] 张学梅,李东,马青华,等.原生煤和构造煤的吸附等量线比较 及与瓦斯突出的关系研究[J].煤炭加工与综合利用,2019(12):42. ZHANG Xuemei, LI Dong, MA Qinghua, et al. Adsorption isotherms of primary coal and tectonic coal and their relationship with gas outburst[J]. Coal Processing and Comprehensive Utilization, 2019(12): 42.
[20] 李东,张学梅,郝静远,等.温度-压力-吸附和煤与瓦斯突出的关系探讨[J].煤矿安全,2020,51(5):21. LI Dong, ZHANG Xuemei, HAO Jingyuan, et al. Discussion on the relationship between temperature pressure adsorption and coal and gas outburst[J]. Safety in Coal Mines, 2020, 51 (5): 21.
-
期刊类型引用(2)
1. 解振华,高登云,马添虎,马亚东,邰浩茼,鞠志勇. 软弱夹层巷道围岩失稳特征分析及控制技术研究. 煤炭技术. 2023(05): 101-105 . 百度学术
2. 李剑,李永乐,谢正正,张农,郭丰,林学贞,陈清华. 深埋复合顶板煤巷破坏特征及跨界锚注分级连续化支护技术. 煤矿安全. 2023(08): 65-72 . 本站查看
其他类型引用(0)
计量
- 文章访问数: 23
- HTML全文浏览量: 0
- PDF下载量: 12
- 被引次数: 2