预制裂纹对水中高压电脉冲致裂煤岩体的影响
Effect of pre-crack on coal and rock mass induced by high voltage electric pulse in water
-
摘要: 为了探究预制裂纹对水中高压电脉冲致裂煤岩体的影响,提高矿区煤岩层渗透性,分别对包含和不含预制裂纹煤岩体相似试样进行了高压电脉冲致裂试验;在此基础上,运用PFC数值模拟软件,建立不同峰值压力下的包含和不含预制裂纹煤岩体模型进行致裂模拟。试验和模拟结果均表明:预制裂纹对高压脉冲放电致裂煤岩体有一定的促进作用;预制裂纹对裂纹的扩展具有一定的导向作用,但裂纹最终沿平行于最大主应力的方向进行扩展;随着峰值压力越高,预制裂纹旁形成的裂纹网络发育得越丰满、沿着预制裂纹的端头向外延伸的裂纹长度减小、与不含预制裂纹的力链断裂数目差值也在减小。Abstract: In order to explore the influence of prefabricated cracks on coal rock mass induced by high voltage electric pulse in water, and improve the permeability of coal and rock strata in the mining area, the high voltage pulse cracking tests were carried out on similar samples of coal and rock mass with and without prefabricated cracks. On this basis, PFC numerical simulation software was used to build coal and rock mass models with and without prefabricated cracks under different peak pressures for fracture simulation. The experimental and simulation results show that the prefabricated cracks have a certain promoting effect on the fractured coal and rock mass caused by high pressure pulse discharge. The prefabricated crack has a certain guiding effect on the crack propagation, but the crack propagates along the direction parallel to the maximum principal stress. With the increase of the peak pressure, the crack network formed next to the prefabricated crack develops more fully, the crack length extending outward along the end of the prefabricated crack decreases, and the difference between the number of force chain fractures and those without the prefabricated crack also decreases.
-
-
[1] 贾慧敏,闫玲,毛崇昊,等.煤层气储层毛管压力对煤层气开发效果的影响[J].煤矿安全,2020,51(5):6. JIA Huimin, YAN Lin, MAO Chonghao, et al. Influence of capillary pressure on CBM reservoir development effect[J]. Safety in Coal Mines, 2020, 51(8): 6.
[2] 任建华,任韶然,孟尚志.煤层气井产气规律及产能影响因素分析[J].科学技术与工程,2013,13(10): 2799-2802. REN Jianhua, REN Shaoran, MENG Shangzhi. Analysis of production rule and productivity influencing factors of coalbed methane[J]. Science Technology and Engineering, 2013, 13(10): 2799-2802.
[3] 胡秋嘉,贾慧敏,祁空军,等.高煤阶煤层气井单相流段流压精细控制方法-以沁水盆地樊庄-郑庄区块为例[J].天然气工业,2018,38(9):76-81. HU Qiujia, JIA Huimin, QI Kongjun, et al. A fine control method of flowing pressure in single-phase flow section of high-rank CBM gas development wells: a case study from the Fanzhuang-Zhengzhuang Block in the Qinshui Basin[J]. Natural gas industry, 2018, 38(9): 76-81.
[4] 冯兴武,王树森,余小燕,等.有效应力对煤层气储层各向异性的影响[J].煤矿安全,2020,51(2):15-19. FENG Xingwu, WANG Shusen, YU Xiaoyan, et al. Influence of effective stress on anisotropy of high-rank coalbed methane reservoir[J]. Safety in Coal Mines, 2020, 51(2): 15-19.
[5] 冯云飞,李哲远.中国煤层气开采现状分析[J].能源与节能,2018(5):26-27. FENG Yunfei, LI Zheyuan. Analysis of the status quo of coalbed methane exploitation in China[J]. Energy and Conservation, 2018(5): 26-27.
[6] 赵岩龙,汪志明,辛晓霖.有效应力对煤层渗透性影响的试验和模型研究[J].矿业研究与开发,2018,38(6):54-60. ZHAO Yanlong, WANG Zhiming, XIN Xiaolin. Experiment and model research on the influence of effective stress on the coal permeability[J]. Mining Research and Development, 2018, 38(6): 54-60.
[7] 王锦山,王力,孟德光.煤层中水-气两相流体渗透性影响因素分析[J].矿业研究与开发,2006,26(2):41. WANG Jinshan, WANG Li, MENG Deguang. Analysis on the factors affecting the permeability of double-phase liquid of water and gas in coal seam[J]. Mining Research and Development, 2006, 26(2): 41.
[8] 卢红奇.高压电脉冲对煤体致裂作用试验研究[D].北京:中国矿业大学(北京),2015. [9] 李恒乐.煤岩电脉冲应力波致裂增渗行为与机理[D].徐州:中国矿业大学,2015. [10] 闫发志.基于电破碎效应的脉冲致裂煤体增渗试验研究[D].徐州:中国矿业大学,2017. [11] 林柏泉,王一涵,闫发志,等.NaCl溶液对电脉冲致裂煤体孔隙结构影响的试验研究[J].煤炭学报,2018,43(5):1328-1334. LIN Boquan, WANG Yihan, YAN Fazhi, et al. Experimental study of the effect of NaCl solution on the pore structure of coal body with high-voltage electrical pulse treatments[J]. Journal of China Coal Society, 2018, 43(5): 1328-1334.
[12] 龙威成,赵乐凯,陈冬冬,等.顺煤层定向长钻孔水力压裂煤层增透技术及试验研究[J].河南理工大学学报(自然科学版),2019,38(3):10-15. LONG Weiwei, ZHAO Lekai, CHEN Dongdong, et al. Experimental study on coal seam permeability enhancement by directional long borehole hydraulic fracturing along seam direction[J]. Journal of Henan Polytechnic University(Natural Science), 2019, 38(3): 10-15.
[13] 吴建军,詹顺,吴明杨,等.扇面水力喷砂定向射孔压裂技术在煤层气井中的应用[J].钻采工艺,2018,41(4):37-40. [14] 富向. “点”式定向水力压裂机理及工程应用[D].沈阳:东北大学,2013. [15] 卢红奇,聂百胜,陈秀娟,等.基于液电效应的高压电脉冲对煤体致裂实验研究[J].中国安全生产科学技术,2020(10):83-88. LU Hongqi, NIE Baisheng, CHEN Xiujuan, et al. Experimental research on coal crushing by using high-voltage electrical pulse based on electrohydraulic effect[J]. Journal of Safety Science and Technology, 2020(10): 83-88.
[16] 鲍先凯,曹嘉星,赵刚,等.电脉冲水压致裂煤岩超声波检测评价方法[J].油气藏评价与开发,2020(4):81-86. BAO Xiankai, CAO Jiaxing, ZHAO Gang, et al. Ultrasonic testing and evaluation method for hydraulic fracturing coal by voltage pulse[J]. Reservoir Evaluation and Development, 2020(4): 81-86.
[17] 王兵.液电效应及其应用[J].科技创新导报,2009(22):52-53. [18] 卞德存.静水压下脉冲放电冲击波特性及其岩体致裂研究[D].太原:太原理工大学,2018. -
期刊类型引用(1)
1. 范鹏宏,聂百胜. 基于CT图像的煤吸附甲烷细观变形分形特性研究. 煤矿安全. 2024(10): 28-37 . 本站查看
其他类型引用(2)
计量
- 文章访问数: 61
- HTML全文浏览量: 0
- PDF下载量: 31
- 被引次数: 3