• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

煤炭安全管理时序数据可视化方式研究

谭章禄, 刘洁, 吴琦

谭章禄, 刘洁, 吴琦. 煤炭安全管理时序数据可视化方式研究[J]. 煤矿安全, 2021, 52(6): 255-259.
引用本文: 谭章禄, 刘洁, 吴琦. 煤炭安全管理时序数据可视化方式研究[J]. 煤矿安全, 2021, 52(6): 255-259.
TAN Zhanglu, LIU Jie, WU Qi. Study on visualization mode of time series data of coal safety management[J]. Safety in Coal Mines, 2021, 52(6): 255-259.
Citation: TAN Zhanglu, LIU Jie, WU Qi. Study on visualization mode of time series data of coal safety management[J]. Safety in Coal Mines, 2021, 52(6): 255-259.

煤炭安全管理时序数据可视化方式研究

Study on visualization mode of time series data of coal safety management

  • 摘要: 为探究煤炭安全管理时序数据的最优可视化展示方式,基于时序数据不同维度和管理任务类型层面下选取7幅可视化图形开展眼动实验,并记录被试者的3种眼动指标作为实验数据,运用SPSS19.0软件进行数据分析。结果表明:展示多维数据的趋势任务时,折线图展示效果最好;展示二维数据的循环与周期任务时,螺旋图展示效果最好;展示二维数据的数值点识别任务时,散点图展示效果最好。
    Abstract: In order to explore the optimal visualization display mode of coal safety management time series data, this paper selects 7 visualization graphics to carry out eye movement experiment based on different data dimensions and management task types of time series data, and records 3 eye movement indexes of subjects as experimental data, and uses spss19.0 software for data analysis. The results show that: the line chart shows the best effect during displaying the trend task of multi-dimensional data; the spiral chart shows the best effect during displaying the cycle and cycle task of two-dimensional data; the scatter chart shows the best effect during displaying the numerical point recognition task of two-dimensional data.
  • [1] 王立杰,刘志东.经济时间序列分析技术在煤炭价格预测中的应用[J].煤炭学报,2001,26(1):109-112.

    WANG Lijie, LIU Zhidong. The application of economy time series analysis technique in coal price forecast[J]. Journal of China Coal Society, 2001, 26(1): 109-112.

    [2] 李润求,吴莹莹,施式亮,等.煤矿瓦斯涌出时序预测的自组织数据挖掘方法[J].中国安全生产科学技术,2017,13(7):18-23.

    LI Runqiu, WU Yingying, SHI Shiliang, et al. Research on self-organizing data mining method for time series prediction of gas emission in coal mine[J]. Journal of Safety Science and Technology, 2017, 13(7): 18-23.

    [3] 穆文瑜,李茹,阴志洲,等.煤矿多传感器混沌时序数据融合预测[J].计算机应用,2012,32(6):1769.

    MU Wenyu, LI Ru, YIN Zhizhou, et al. Fusion prediction of mine multi-sensor chaotic time series data[J]. Journal of Computer Applications, 2012, 32(6): 1769.

    [4] 马豪.高维数据可视化方法研究[D].长沙:国防科学技术大学,2016.
    [5] 宁小亮,蒲阳.基于矿压监测动态特征的瓦斯突出预警系统设计[J].工矿自动化,2015,41(3):10-13.

    NING Xiaoliang, PU Yang. Design of early-warning system of gas outburst based on dynamic characteristics of pressure monitoring[J]. Industry and Automation, 2015, 41(3): 10-13.

    [6] C 查特菲尔德.时间序列分析导论[M].方再根,译.北京:宇航出版社,1986.
    [7] 席茂.矿山地面灾害监测数据可视化表达和实现技术[D].太原:太原理工大学,2015.
    [8] 陈晓皎,薛澄岐,陈默,等.基于眼动追踪实验的数字界面质量评估模型[J].东南大学学报(自然科学版), 2017,47(1):38-42.

    CHEN Xiaojiao, XUE Chengqi, CHEN Mo, et al. Quality assessment model of digital interface based on eye-tracking experiments[J]. Journal of Southeast University(Natural Science Edition), 2017, 47(1): 38-42.

    [9] 田芸,于赛克,周前祥,等.眼动指标在脑力疲劳研究中的应用分析[J].人类工效学,2015,21(4):69-73.
    [10] Subramanian S.CG&A with eye tracking for cognitive behavior analysis and psychoanalysis[C]//2013 International Conference on Developments in Esystems Engineering. IEEE, 2013: 132-137.
计量
  • 文章访问数:  35
  • HTML全文浏览量:  0
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 发布日期:  2021-06-19

目录

    /

    返回文章
    返回