多煤层条件下高位钻孔瓦斯抽采层位优选研究
Research on optimization of gas drainage height with high-level boreholes under multiple coal seam conditions
-
摘要: 为解决多煤层条件下多来源卸压瓦斯高位钻孔抽采层位不清的问题,引入同位素识别技术,并通过现场实测煤层解吸瓦斯及不同层位高位钻孔抽采瓦斯气体组分及碳氢同位素值,计算得出山西腾晖煤矿607工作面高位钻孔瓦斯抽采来源及比例,确定了其高位钻孔瓦斯抽采的最佳层位。结果表明:随着高位钻孔层位的增大,本煤层采空区遗煤瓦斯及下邻近层卸压瓦斯来源占比逐渐增加,上邻近层卸压瓦斯来源占比减小;确定了有效控制本煤层及下邻近层瓦斯的最佳高位钻孔低层位,即距开采煤层顶板7.9~14.2 m,以及有效控制本煤层及上邻近层瓦斯的最佳高位钻孔高层位,即距开采煤层顶板42.1~45.4 m。Abstract: In order to solve the problem of the uncertainty of the height when high-level boreholes are used to extract pressure relief gas from multiple sources under the condition of multiple coal seams, the isotope and gas composition of methane desorbed from the coal cores of the mining seams and their adjacent seams, as well as the methane collected from the methane drainage boreholes at different heights in the gobs were measured. The source and proportion of gas drainage from high-level boreholes at 607 working face of Tenghui Mine in Shanxi Province were calculated, and the optimal height range for gas drainage from high-level boreholes was determined. The optimal position of high borehole and low borehole to effectively control the gas in this coal seam and the adjacent layer below is determined, that is, 7.9 m to 14.2 m away from the roof of mining coal seam. And the best position of high borehole to effectively control the gas in this coal seam and the upper adjacent layer, that is, 42.1 m to 45.4 m away from the roof of mining coal seam.
-
-
[1] 程远平,俞启香.中国煤矿区域性瓦斯治理技术的发展[J].采矿与安全工程学报,2007,24(4):383-390. CHENG Yuanping, YU Qixiang. Development of regional gas control technology for Chinese coalmines[J]. Journal of Mining & Safety Engineering, 2007, 24(4): 383-390.
[2] 李树刚,徐培耘,赵鹏翔,等.综采工作面覆岩压实区演化采高效应分析及应用[J].煤炭学报,2018,43(A1):112-120. LI Shugang, XU Peigeng, ZHAO Pengxiang, et al. Analysis and application on the mining height effect of evolving law of compaction area at fully mechanized face[J]. Journal of China Coal Society, 2018, 43(A1): 112-120.
[3] 孙荣军,李泉新,方俊,等.采空区瓦斯抽采高位钻孔施工技术及发展趋势[J].煤炭科学技术,2017,45(1):94-99. SUN Rongjun, LI Quanxin, FANG Jun, et al. Construction technology and development tendency of high level borehole for gas drainage in goaf[J]. Coal Science and Technology, 2017, 45(1): 94-99.
[4] 毕慧杰,邓志刚,赵善坤,等.高瓦斯综采工作面定向高位钻孔瓦斯抽采技术研究[J].煤炭科学技术,2019,47(4):134-140. BI Huijie, DENG Zhigang, ZHAO Shankun, et al. Research on gas drainage technology of directional high-level borehole in high gassy fully-mechanized mining face[J]. Coal Science and Technology, 2019, 47(4): 134-140.
[5] 赵灿.基于非均质采空区渗流模型的高位钻孔瓦斯抽采效果预测分析[J].煤矿安全,2019,50(6):166. ZHAO Can. Prediction and analysis of gas drainage effect of high level borehole based on seepage model of heterogeneous gob[J]. Safety in Coal Mines, 2019, 50(6): 166.
[6] 李春元,张勇,李佳.采空区瓦斯宏观流动通道的高位钻孔抽采技术[J].采矿与安全工程学报,2017,34(2):391-397. LI Chunyuan, ZHANG Yong, LI Jia. Highly-located boreholes drainage technology of gas macroscopic flow channel in goaf[J]. Journal of Mining & Safety Engineering, 2017, 34(2): 391-397.
[7] 徐刚,王云龙,张天军,等.厚煤层采动覆岩裂隙分布特征及卸压瓦斯抽采技术[J].煤矿安全,2020,51(1):150-155. XU Gang, WANG Yunlong, ZHANG Tianjun, et al. Fracture distribution characteristics of mining-induced overburden in thick coal seam and pressure relief gas extraction technology[J]. Safety in Coal Mines, 2020, 51(1): 150-155.
[8] 王依磊.高位钻孔技术在特厚煤层瓦斯治理中的应用[J].煤矿安全,2017,48(1):120-122. WANG Yilei. Application of high-level borehole technology in gas control of super high seam[J]. Safety in Coal Mines, 2017, 48(1): 120-122.
[9] WHITICAR M J, FABER E, SCHOELL M. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-Isotopic evidence[J]. Geochimica et Cosmochimica Acta, 1986, 50: 693-709. [10] 高先志.利用甲烷碳同位素研究混合气的混合体积[J].沉积学报,1997,15(2):63-65. -
期刊类型引用(3)
1. 高科,吕航宇,戚志鹏,刘玉姣. 基于PCA-BP神经网络的巷道通风摩擦阻力系数预测模型. 矿业安全与环保. 2024(01): 7-13 . 百度学术
2. 梁军. 基于大数据的通风巷道摩擦阻力系数快速确定方法研究. 能源与环保. 2024(04): 51-55 . 百度学术
3. 刘彦青. 基于巷道摩擦阻力系数BP神经网络预测模型的矿井风网风量预测研究. 矿业安全与环保. 2021(02): 101-106 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 25
- HTML全文浏览量: 0
- PDF下载量: 26
- 被引次数: 6