郭屯矿底部含水层水文地质特征及其失水因素
Hydrogeological characteristics and water loss factors of “bottom aquifer” in Guotun Coal Mine
-
摘要: 新生界底部含水层水位持续下降是导致我国东部矿区地面沉降或井筒变形主要原因,查明地质条件及其影响因素是治理此类灾害的重要前提。以郭屯煤矿为对象,在分析底部含水层水文地质条件的基础上,采用压水试验和Slug试验开展对其渗透性的测试分析,并分析其失水影响因素。结果表明:在工业广场范围内,底部含水层沉积空间分布存在较大差异,厚度不均,不同区域的渗透率和渗透系数也变化较大,不同位置底部含水层失水情况具有差异性;前期井筒解冻和巷道掘进及后期井筒附近工作面的开采扰动是导致底部含水层失水主要诱发因素。Abstract: The continuous decrease of the water level of the “bottom aquifer” in Cenozoic is the main cause of land subsidence or shaft deformation in the eastern mining areas of China. It is an important prerequisite to manage such disasters by identifying geological conditions and influencing factors. Taking Guotun Coal Mine as the object, on the basis of analyzing the “bottom aquifer” hydrogeological conditions, the water pressure test and the Slug test are used to carry out the test analysis of its permeability, and the factors affecting its water loss are analyzed. The results show that within the scope of the industrial square, there is a large difference in the spatial distribution of the “bottom aquifer” sediments, uneven thickness, the permeability and permeability coefficients in different areas also vary greatly, and the water loss of the “bottom aquifer” in different locations is different. The main factors that lead to “bottom aquifer” loss are thawing of wellbore in early stage, roadway driving and mining disturbance of working face near wellbore in late stage.
-
Keywords:
- bottom aquifer /
- aquifer parameters /
- groundwater dynamics /
- mining crack /
- water pressure test /
- Slug test
-
-
[1] 甄权.含水层下厚硬顶板上提面采场安全开采技术研究[J].煤炭技术,2016,35(5):99-101. ZHEN Quan. Research on safe mining technology of straight overlying stope of hard roof below aquifer[J]. Coal Technology, 2016, 35(5): 99-101.
[2] ZHANG Jingsen, JIN Chao, XING Lecai, et al. Mineralogy and geochemistry of the coal seam of Shanxi Formation in Guotun Mine, Juye Coalfield, North China[J]. Energy Exploration & Exploitation, 2019, 37(6): 1779. [3] 王海峰,杨剑萍,庞效林,等.鲁北平原晚第四纪地层结构及沉积演化[J].沉积学报,2016,34(1):90-101. WANG Haifeng, YANG Jianping, PANG Xiaolin, et al. Stratigraphic structure and sedimentary evolution during late quaternary in Lubei plain[J]. Acta Sedimentologica Sinica, 2016, 34(1): 90-101.
[4] 张跃怀,程详,赵光明.淮南矿区深部综采工作面覆岩两带高度发育特征研究[J].矿业安全与环保,2012, 39(4):5-8. ZHANG Yuehuai, CHENG Xiang, ZHAO Guangming. Study on height development characteristics of two zones of overlying strata in deep fully-mechanized face in Huainan coal mining area[J]. Mining Safety & Environmental Protection, 2012, 39(4): 5-8.
[5] 代锋刚,张发旺,王滨,等.群矿开采条件下山西潞安矿区的地下水流场变化[J].地球学报,2018,39(1):94-102. DAI Fenggang, ZHANG Fawang, WANG Bin, et al. Changes of the groundwater flow field of Lu’an mining area, under the condition of group mining Shanxi province[J]. Acta Geoscientica Sinica, 2018, 39(1): 94-102.
[6] 朱伟.厚松散层薄基岩下采动裂隙发育规律及应用[J].金属矿山,2019(10):126-132. ZHU Wei. Developing regularity of mining fracture and application about thin bedrock covered with thick unconsolidated sediment under mining condition[J]. Metal Mine, 2019(10): 126-132.
[7] 杨军伟,侯得峰.厚松散层矿区采动程度对地表沉降特征的影响[J].煤矿安全,2017,48(4):52-54. YANG Junwei, HOU Defeng. Influence of mining intensity on surface subsidence characteristics in mines covered with thick unconsolidated sediment[J]. Safety in Coal Mines, 2017, 48(4): 52-54.
[8] 李建伟,刘长友,卜庆为.浅埋厚煤层开采覆岩采动裂缝时空演化规律[J].采矿与安全工程学报,2020,37(2):238-246. LI Jianwei, LIU Changyou, BU Qingwei. Spatio-temporal evolution of overburden fissures with thin unconsolidated sediment under thick coal mining condition[J]. Journal of Mining & Safety Engineering, 2020, 37(2): 238-246.
[9] 王玉涛,刘震.深部煤层非充分采动下覆岩裂隙场可视化探测研究[J].煤炭科学技术,2020,48(3):197. WANG Yutao, LIU Zhen. Study on visual detection of fissure field of overlying strata under inadequate mining in deep coal seam[J]. Coal Science and Technology, 2020, 48(3): 197.
[10] 高江平,胡海波,孙世界,等.太沙基地基极限承载力的三剪应力统一强度理论解[J].西安建筑科技大学学报(自然科学版),2019,51(2):186-191. GAO Jiangping, HU Haibo, SUN Shijie, et al. Three-shear stress unified strength theoretical solution of Terzaghi ultimate bearing capacity of foundation[J]. Journal of Xi’an University of Architecture & Technology, 2019, 51(2): 186-191.
[11] 李小琴,李文平.深厚表土底含失水变形时土与井壁相互作用弹塑性模型[J].岩土工程学报,2005(3):329-332. LI Xiaoqin, LI Wenping. Elasto-plastic model of the interaction between soil and shaft wall during deep soil compression due to diswatering[J]. Journal of Geotechnical Engineering, 2005(3): 329-332.
[12] 李文平.徐淮矿区深厚表土底含失水压缩变形实验研究[J].煤炭学报,1999,24(3):9-13. LI Wenping. Testing research of compressive deformation due to diswatering from the bottom aquifer buried by great overburden soils in Xuhuai mine area[J]. Journal of China Coal Society, 1999, 24(3): 9-13.
[13] 张丁丁.兖州矿区第四系厚松散层沉降特性研究[D].西安:西安科技大学,2015. [14] 程桦,张楠,姚直书,等.厚表土井筒修复内套钢板混凝土井壁技术研究[J].煤炭科学技术,2019,47(6):58-65. CHENG Hua, ZHANG Nan, YAO Zhishu, et al. Technology of inner steel plate concrete shaft lining for thick topsoil wellbore repair[J]. Coal Science and Technology, 2019, 47(6): 58-65.
[15] 吴言霜.朱仙庄煤矿“五含”疏放水条件下井壁受力变形机理与安全监测研究[D].淮南:安徽理工大学,2019. [16] 田辉.深厚表土层井筒稳定性长期监测与评价[D].徐州:中国矿业大学,2019. [17] 刘凯旋.厚松散含水层直覆下煤层开采覆岩破坏特征研究[D].淮南:安徽理工大学,2019. [18] 琚棋定.丁集煤矿近松散含水层开采覆岩导水裂隙带发育规律[D].淮南:安徽理工大学,2019. [19] 蔡有京.郭屯煤矿松散底部含水层注浆扩散机理研究[D].淮南:安徽理工大学,2018. [20] 姚庆健.郭屯煤矿含水层参数计算及井筒沉降与偏斜机理分析[D].淮南:安徽理工大学,2017. [21] 彭尚稳.煤矿立井冻结法施工方案选择研究[C]//北京力学会第26届学术年会论文集.北京:北京力学会,2020:1438-1440. -
期刊类型引用(2)
1. 任少魁,秦玉金,贾宗凯,苏伟伟. 有效应力对煤体渗透率的影响试验研究. 煤矿安全. 2023(01): 56-61 . 本站查看
2. 岳少飞,王开,张小强,康天合,闫建兵,姜玉龙,郭泽雄. 不同加载速率无烟煤蠕变特性及能量演化规律. 煤炭学报. 2023(08): 3060-3075 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 39
- HTML全文浏览量: 0
- PDF下载量: 12
- 被引次数: 6