• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

高温水蒸汽作用后长焰煤细观结构的显微CT研究

李海琪, 冯子军

李海琪, 冯子军. 高温水蒸汽作用后长焰煤细观结构的显微CT研究[J]. 煤矿安全, 2021, 52(6): 47-51.
引用本文: 李海琪, 冯子军. 高温水蒸汽作用后长焰煤细观结构的显微CT研究[J]. 煤矿安全, 2021, 52(6): 47-51.
LI Haiqi, FENG Zijun. Micro CT study of microstructure of long flame coal after high temperature steam[J]. Safety in Coal Mines, 2021, 52(6): 47-51.
Citation: LI Haiqi, FENG Zijun. Micro CT study of microstructure of long flame coal after high temperature steam[J]. Safety in Coal Mines, 2021, 52(6): 47-51.

高温水蒸汽作用后长焰煤细观结构的显微CT研究

Micro CT study of microstructure of long flame coal after high temperature steam

  • 摘要: 利用显微CT技术研究了不同高温水蒸汽作用下长焰煤试样的细观结构。研究表明:热解温度低于300 ℃时,自由水及气体的散失造成裂纹的产生,当热解温度高于300 ℃时,有机质热解形成了相互贯通的裂隙网络,且孔裂隙主要在有机质内形成;热解分为3个阶段,300 ℃之前煤样缓慢热解,孔裂隙缓慢增加;300~500 ℃之间为热解加剧阶段,煤样孔隙率增加明显;热解温度高于500 ℃时,热解最为充分,煤样孔隙率急剧增加;550 ℃热解温度作用后,煤样的体孔隙率达到32.35%,较25 ℃下煤样的体孔隙率提高了9.82倍;300 ℃是热解阈值点,热解温度高于阈值点时,不同层理面发育良好,形成相互贯穿形成了孔隙网络,加快了热解作用,为热解产物提供了运移通道。
    Abstract: The microstructure of long flame coal samples subjected to different high temperature steam was studied by means of micro CT technique. The results show that when the pyrolysis temperature is lower than 300 ℃, the loss of free water and gas leads to the formation of cracks. When the pyrolysis temperature is higher than 300 ℃, the interconnecting crack network is formed in the pyrolysis of organic matter, and the pores and cracks are mainly formed in the organic matter. Pyrolysis can be divided into three stages. Before 300 ℃, coal samples are pyrolyzed slowly, and pores and cracks increase slowly. The pyrolysis intensifies between 300 ℃ and 500 ℃, and the porosity of coal samples increases obviously. When the pyrolysis temperature is higher than 500 ℃, the pyrolysis is the most complete and the porosity of coal samples increases sharply. After 550 ℃, the volume porosity of the coal sample reaches 32.35%, which is 9.82 times higher than that at 25 ℃. Moreover, 300 ℃ is the threshold point of pyrolysis. When the pyrolysis temperature is higher than the threshold point, different bedding planes are well developed, forming a pore network through each other, accelerating pyrolysis and providing a migration channel for pyrolysis products.
  • [1] 俞珠峰,陈贵峰,杨丽.中国洁净煤技术评价方法及评价模型CCTM[J].煤炭学报,2006,31(4):515-519.

    YU Zhufeng, CHEN Guifeng, YANG Li. Methodology of Chinese clean coal technologies evaluation and CCTM model[J]. Journal of China Coal Society, 2006, 31(4): 515-519.

    [2] 杨丽,陈贵峰.洁净煤技术评价模型及应用[J].煤炭学报,2007,32(6):630-633.

    YANG Li, CHEN Guifeng. The clean coal technology model and its application[J]. Journal of China Coal Society, 2007, 32(6): 630-633.

    [3] Close J C. Natural fracture in coal: Chapter 5[J]. AAPG, 1993, 180: 119-132.
    [4] Pan Z, Connell L D. Modelling of anisotropic coal swelling and its impact on permeability behaviour for primary and enhanced coalbed methane recovery[J]. International Journal of Coal Geology, 2011, 85(3-4): 257-267.
    [5] Cai Y, Li Q, Liu D, et al. Insights into matrix compressibility of coals by mercury intrusion porosimetry and N2 adsorption[J]. International Journal of Coal Geology, 2018, 200: 199-212.
    [6] Zhentao Li, Dameng Liu, Yidong Cai, et al. Investigation of methane diffusion in low-rank coals by a multiporous diffusion model[J]. Journal of Natural Gas Science & Engineering, 2016, 33: 97-107.
    [7] 袁亮.淮南矿区矿井降温研究与实践[J].采矿与安全工程学报,2007(3):298-301.

    YUAN Liang. Theoretical analysis and practical application of coal mine cooling in Huainan Mining Area[J]. Journal of Mining & Safety Engineering, 2007(3): 298-301.

    [8] 谢和平,周宏伟,薛东杰,等.煤炭深部开采与极限开采深度的研究与思考[J].煤炭学报,2012,37(4):535-542.

    XIE Heping, ZHOU Hongwei, XUE Dongjie, et al. Research and consideration on deep coal mining and critical mining depth[J]. Journal of China Coal Society, 2012, 37(4): 535-542.

    [9] 降文萍,宋孝忠,钟玲文.基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J].煤炭学报,2011,36(4):609-614.

    JIANG Wenping, SONG Xiaozhong, ZHONG Lingwen. Research on the pore properties of different coal body structure coals and the effects on gas outburst based on the low-temperature nitrogen adsorption method[J]. Journal of coal science, 2011, 36(4): 609-614.

    [10] 宋晓夏,唐跃刚,李伟,等.中梁山南矿构造煤吸附孔分形特征[J].煤炭学报,2013,38(1):134-139.

    SONG Xiaoxia, TANG Yuegang, LI Wei, et al. Fractal characteristics of adsorption pores of tectonic coal from Zhongliangshan Southern Coalmine[J]. Journal of China Coal Society, 2013, 38(1): 134-139.

    [11] 张井,于冰,唐家祥.瓦斯突出煤层的孔隙结构研究[J].中国煤田地质,1996,8(2):71-74.
    [12] Li H Y, Ogawa Y, Shimada S. Mechanism of methane flow through sheared coals and its role on methane recovery[J]. Fuel, 2003, 82: 1271-1279.
    [13] 范俊佳,琚宜文,侯泉林,等.不同变质变形煤储层孔隙特征与煤层气可采性[J].地学前缘,2010,17(5):325-335.

    FAN Junjia, JU Yiwen, HOU Quanlin, et al. Pore structure characteristics of different metamorphic-deformed coal reservoirs and its restriction on recovery of coalbed methane[J]. Earth Science Frontiers, 2010, 17(5): 325-335.

    [14] 张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40-44.

    ZHANG Hui. Genetical type of proes in coal reservoir and its research significance[J]. Journal of coal science, 2001, 26 (1): 40-44.

    [15] Yao Y B, Liu D M, Che Y, et al. Non-destructive characterization of coal samples from China using microfocus X-ray computed tomography[J]. International Journal of Coal Geology, 2009, 80(2): 113-123.
    [16] 宋晓夏,唐跃刚,李伟,等.基于显微 CT 的构造煤渗流孔精细表征[J].煤炭学报,2013,38(3):435-440.

    SONG Xiaoxia, TANG Yuegang, LI Wei, et al. Advanced characterization of seepage pores in deformed coals based on micro-CT[J]. Journal of coal science, 2013, 38(3): 435-440.

    [17] 孟巧荣,赵阳升,于艳梅,等.不同温度下褐煤裂隙演化的显微 CT 试验研究[J].岩石力学与工程学报,2010,29(12):2475-2483.

    MENG Qiaorong, ZHAO Yangsheng, YU Yanmei, et al. Micro-CT experimental study of crack evolution of lignite under different temperatures[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12): 2475-2483.

    [18] 于艳梅,胡耀青,梁卫国,等.应用 CT 技术研究瘦煤在不同温度下孔隙变化特征[J].地球物理学报,2012,55(2):637-644.

    YU Yanmei, HU Yaoqing, LIANG Weiguo, et al. Study on pore characteristics of lean coal at different temperature by CT technology[J]. Chinese Journal of Geophysics, 2012, 55(2):637-644.

    [19] NI X, MIAO J, LV R, et al. Quantitative 3D spatial characterization and flow simulation of coal macropores based on μCT technology[J]. Fuel, 2017, 200: 199.
  • 期刊类型引用(4)

    1. 畅志兵,王楚楚,旷文昊,唐颖,吴晓丹,刘淑琴. 黏结性对富油煤热解孔隙结构演变及渗流的影响研究. 煤田地质与勘探. 2024(07): 54-63 . 百度学术
    2. 郑亚炜,康健婷,康天合,晏嘉欣,汪家畅,张慧慧. 温度冲击作用参数对泥岩甲烷吸附解吸特性的影响正交试验研究. 煤矿安全. 2024(09): 48-59 . 本站查看
    3. 李小二,王鹏,靳翔飞,陈新明,张将令. 基于CT扫描的煤样图像处理及裂隙形态表征. 煤矿安全. 2022(02): 125-129 . 本站查看
    4. 王双明,申艳军,孙强,刘浪,师庆民,朱梦博,张波,崔世东. “双碳”目标下煤炭开采扰动空间CO_2地下封存途径与技术难题探索. 煤炭学报. 2022(01): 45-60 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  33
  • HTML全文浏览量:  11
  • PDF下载量:  28
  • 被引次数: 11
出版历程
  • 发布日期:  2021-06-19

目录

    /

    返回文章
    返回