• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

煤岩力学特性降解及声发射信号多参量特征试验研究

高硕, 雷瑞德, 徐新杭, 许石青

高硕, 雷瑞德, 徐新杭, 许石青. 煤岩力学特性降解及声发射信号多参量特征试验研究[J]. 煤矿安全, 2021, 52(6): 17-23.
引用本文: 高硕, 雷瑞德, 徐新杭, 许石青. 煤岩力学特性降解及声发射信号多参量特征试验研究[J]. 煤矿安全, 2021, 52(6): 17-23.
GAO Shuo, LEI Ruide, XU Xinhang, XU Shiqing. Experimental study on degradation of mechanical properties of coal and rock and multi-parameter characteristics of acoustic emission signals[J]. Safety in Coal Mines, 2021, 52(6): 17-23.
Citation: GAO Shuo, LEI Ruide, XU Xinhang, XU Shiqing. Experimental study on degradation of mechanical properties of coal and rock and multi-parameter characteristics of acoustic emission signals[J]. Safety in Coal Mines, 2021, 52(6): 17-23.

煤岩力学特性降解及声发射信号多参量特征试验研究

Experimental study on degradation of mechanical properties of coal and rock and multi-parameter characteristics of acoustic emission signals

  • 摘要: 为研究循环荷载作用下煤样断裂演化过程,借助MTS815力学试验机及声发射仪对加卸载过程中煤样力学特性及声发射信号特征展开了深入的研究。结果表明:不同应力水平下,弹性模量表现出3阶段的变化趋势,即急剧增加-缓慢增加-急剧降低;泊松比与不可逆应变呈现出由线性向非线性的演变,即稳定不变-缓慢增加-急剧增加;低、中和高频特征信号占比分别为77.41%、6.18%和16.41%,其中,低频高幅值能量信号是诱导煤样发生宏观断裂的主要特征信号;微观拉伸裂纹和剪切裂纹占比分别为37.9%和62.1%;基于加卸载响应比定义的损伤因子较好地表征了不同加载阶段的损伤演化过程。
    Abstract: In order to investigate the fracturing process of coal subjected to cyclic loading, the mechanical properties and the acoustic emission characteristics of coal samples were analyzed using MTS815 mechanical testing machine and acoustic emission instruments. The results show that under different stress levels, the elastic modulus of coal presents a rapid increase, then slow increase and finally sharp decrease trend. Poisson’s ratio and irreversible strain show a three-stage trend, namely, a first slow increase, subsequently gradual increase and finally a significant increase. Low, medium and high frequency characteristic signals accounted for 77.41%, 6.18% and 16.41%, respectively. Among them, low frequency and high amplitude energy signal is the main characteristic signal to induce macroscopic fracture of coal sample. Microtensile crack and shear crack accounted for 37.9% and 62.1%, respectively. Finally, the damage factors defined based on the load-unloading response ratio can better characterize the damage evolution process at different loading stages.
  • [1] 何明明,陈蕴生,李宁,等.单轴循环荷载作用下砂岩变形特性与能量特征[J].煤炭学报,2015,40(8):1805-1812.

    HE Mingming, CHEN Yunsheng, LI Ning, et al. Deformation and energy characteristics of sandstone subjected to uniaxial cyclic loading[J]. Journal of China Coal Society, 2015, 40(8): 1805-1812.

    [2] 朱振飞,陈国庆,肖宏跃,等.基于声发射多参量分析的岩桥裂纹扩展研究[J].岩石力学与工程学报,2018, 37(4):910-918.

    ZHU Zhenfei, CHEN Guoqing, XIAO Hongyue, et al. Study on crack propagation of rock bridge based on multi parameters analysis of acoustic emission[J]. Journal of China Coal Society, 2018, 37(4): 910-918.

    [3] 肖福坤,刘刚,申志亮,等.循环载荷作用下煤样能量转化规律和声发射变化特征[J].岩石力学与工程学报,2016,35(10):1955-1964.

    XIAO Fukun, LIU Gang, SHEN Zhiliang, et al. Energy conversion and acoustic emission (AE) characteristics of coal samples under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 1955-1964.

    [4] LEI Ruide, ZHANG Zhenyu, GE Zhaolong, et al. Deformation localization and cracking processes of sandstone containing two flaws of different geometric arrangements[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43: 1959-1977.
    [5] 刘崇岩,赵光明,许文松.加卸荷条件下岩石力学特性与声发射特征[J].中国安全生产科学技术,2019,15(4):110-114.

    LIU Chongyan, ZHAO Guangming, XU Wensong. Mechanical properties and acoustic emission characteristics of rock under load-unload condition[J]. Journal of Safety Science and Technology, 2019, 15(4): 110-114.

    [6] ZHANG Jianzhi, ZHOU Xiaoping. AE event rate characteristics of flawed granite: from damage stress to ultimate failure[J]. Geophysical Journal International, 2020, 222: 795-814.
    [7] 张艳博,梁鹏,田宝柱,等.花岗岩灾变声发射信号多参量耦合分析及主破裂前兆特征试验研究[J].岩石力学与工程学报,2016,35(11):2249.

    ZHANG Yanbo, LIANG Peng, TIAN Baozhu, et al. Multi parameter coupling analysis of acoustic emission signals of granite disaster and the precursor characteristics of the main rupture[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(11): 2249.

    [8] 戴俊,王羽亮,李涛.微波照射后花岗岩裂纹扩展规律试验研究[J].煤炭工程,2020,52(6):130-133.

    DAI Jun, WANG Yuliang, LI Tao. Experiment on crack propagation law of microwave irradiated granite[J]. Coal Engineering, 2020, 52(6): 130-133.

    [9] 邓川.循环荷载作用下煤岩力学及声发射特征研究[J].煤矿安全,2020,51(2):63-69.

    DENG Chuan. Study on mechanical and acoustic emission characteristics of coal rock under cyclic loading[J]. Safety in Coal Mines, 2020, 51(2): 63-69.

    [10] 张艳博,孙林,姚旭龙,等.花岗岩破裂过程声发射关键信号时频特征试验研究[J].岩土力学,2020,41(1):157-165.

    ZHANG Yanbo, SUN Lin, YAO Xulong, et al. Experimental study of time-frequency characteristics of acoustic emission key signals during granite fracture[J]. Rock and Soil Mechanics, 2020, 41(1): 157-165.

    [11] ZHANG Zhenghu, DENG Jianhui, ZHU Jianbo, et al. An experimental investigation of the failure mechanisms of jointed and intact marble under compression based on quantitative analysis of acoustic emission waveforms[J]. Rock Mechanics & Rock Engineering, 2018, 51: 2299-2307.
    [12] LIU Jianpo, LI Yuanhui, XU Shida, et al. Cracking mechanisms in granite rocks subjected to uniaxial compression by moment tensor analysis of acoustic emission[J]. Theoretical & Applied Fracture Mechanics, 2015, 75: 151-159.
    [13] 王笑然,李楠,王恩元,等. 岩石裂纹扩展微观机制声发射定量反演[J].地球物理学报,2020,63(7):2627-2643.

    WANG Xiaoran, LI Nan, WANG Enyuan, et al. Microcracking mechanisms of sandstone from acoustic emission source inversion[J]. Chinese Journal of Geophysics, 2020, 63(7): 2627-2643.

    [14] LEI Ruide, WANG Yao, ZHANG Liang, et al. The evolution of sandstone microstructure and mechanical properties with thermal damage[J]. Energy Science & Engineering, 2019, 7: 3058-3075.
    [15] 姚旭龙,张艳博,刘祥鑫,等.岩石破裂声发射关键特征信号优选方法[J].岩土力学,2018,39(1):375.

    YAO Xulong, ZHANG Yanbo, LIU Xiangxin, et al. Optimization method for key characteristic signal of acoustic emission in rock fracture[J]. Rock and Soil Mechanics, 2018, 39(1): 375.

    [16] ZHANG Zhenghu, DENG Jianhui. A new method for determining the crack classification criterion in acoustic emission parameter analysis[J]. International Journal of Rock Mechanics & Mining Sciences, 2020, 130: 104323.
    [17] Aldahdooh M A A, Muhamad Bunnori N. Crack classification in reinforced concrete beams with varying thicknesses by mean of acoustic emission signal features[J]. Construction & Building Materials, 2013, 45: 282-288.
    [18] HU Xiaochuan, SU Guoshao, CHEN Guanyan, et al. Experiment on rockburst process of borehole and its acoustic emission characteristics[J]. Rock Mechanics & Rock Engineering, 2019, 52: 783-802.
    [19] YIN Xiangchu, ZHANG Langping, ZHANG Huihui, et al. LURR’s Twenty Years and its Perspective[J]. Pure and Applied Geophysics, 2006, 163: 2317-2341.
    [20] ZHANG Langping, YU Huaizhong, YIN Xiangchu. Failure potential evaluation in engineering experiments using load/unload response ratio method[J]. Pure and Applied Geophysics, 2013, 170: 237-245.
  • 期刊类型引用(8)

    1. 赵德清,魏国营,刘小磊,李学臣,郭艳飞,张雪东. 瓦斯抽采钻孔布孔间距对应力叠加效应的影响规律研究. 煤矿安全. 2025(02): 1-8 . 本站查看
    2. 朱墨然. 瓦斯超限预警技术研究及系统应用. 能源与环保. 2024(09): 16-22 . 百度学术
    3. 裴胜强. 贵州地区煤矿瓦斯超限事故发生规律及对策研究. 内蒙古煤炭经济. 2024(24): 5-8 . 百度学术
    4. 兰海平,张志刚,徐再刚,田祥贵,张少超. 基于LSTM的瓦斯浓度预测与防突预警系统设计. 矿业安全与环保. 2023(02): 64-70 . 百度学术
    5. 马国龙. 煤矿瓦斯超限原因分析及预防对策研究. 中国矿业. 2023(07): 132-138 . 百度学术
    6. 刘世涛,郝兵元,杨冉,朱文庆. 基于方差分析法坚硬顶板下矿压显现分析. 煤炭技术. 2022(07): 20-23 . 百度学术
    7. 胡郑国. 工作面初采期瓦斯超限治理研究. 能源与节能. 2022(09): 20-22 . 百度学术
    8. 梁占泽,马平,赵俊达,王铮,刘涛. 煤矿井下智能无轨辅助运输技术研究. 煤炭工程. 2022(S1): 6-11 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  33
  • HTML全文浏览量:  0
  • PDF下载量:  26
  • 被引次数: 8
出版历程
  • 发布日期:  2021-06-19

目录

    /

    返回文章
    返回