水平割缝和顶板压裂复合作用下煤柱卸压效果 数值模拟分析
Numerical simulation analysis of pressure relief effect under the combined action of horizontal slotting and roof fracturing
-
摘要: 针对多巷布置工作面回采过程中煤柱应力集中程度大、巷道变形量大的问题,采用水平割缝+顶板压裂的双重手段对煤柱和顶板进行弱化卸压,旨在降低煤柱承载的应力水平,改变应力分配比例,使应力集中区向实体煤深部转移。在对煤柱留巷侧向顶板破断结构与应力分布情况以及水平割缝和顶板压裂复合作用下的煤柱卸压机理分析基础上,以纳林河二号矿井为研究对象进行了数值模拟分析,分析结果表明:采取割缝间距2 m+临巷侧保留5 m煤柱不割方案,应力向实体煤侧转移,实体煤侧承压范围主要在1~15 m范围内,相较于未采取任何卸压措施应力降低约30%;采取超高压水力割缝+压裂断顶方案后,保护煤柱侧应力大幅降低,基本处于原岩应力状态,不存在应力集中,应力相较于未采取任何卸压措施降低47%。
Abstract: For the large coal pillar stress concentration degree and the large roadway deformation in the process of mining in multi-lane layout face, to reduce the stress level of coal pillar, change the stress distribution ratio and transfer the stress concentration area to the deep part of solid coal, a dual method of horizontal slotting and roof fracturing is used to weaken the pressure relief of coal pillar and roof in the process of multi-roadway mining. Based on the analysis of the fracture structure and stress distribution of the side roof of the coal pillar retaining roadway and the pressure relief mechanism of the coal pillar under the combined action of horizontal cutting and roof fracturing, the numerical simulation analysis is carried out for the No.2 well of Nalinhe Coal Mine. The results of analysis indicate that when the slotting spacing is 2 m and the coal pillar near the roadway is reserved at 5 m, the pressure bearing range of coal side is mainly in the range of 1-15 m, which is about 30% lower than that without any pressure relief measures; after adopting the scheme of ultra-high pressure hydraulic cutting + fracturing and roof breaking, the stress on the side of protective coal pillar is greatly reduced, which is basically in the original rock stress state, without stress concentration, and the stress is 47% lower than that without any pressure relief measures.
-
-
[1] 吴拥政,康红普.煤柱留巷定向水力压裂卸压机理及试验[J].煤炭学报,2017,42(5):1130-1137. WU Yongzheng, KANG Hongpu. Pressure relief mechanism and experiment of directional hydraulicfracturing in reused coal pillar roadway[J]. Journal of China Coal Society, 2017, 42(5): 1130-1137.
[2] 何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813. HE Manchao, XIE Heping, PENG Suping,et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813.
[3] 姜耀东,刘文岗,赵毅鑫,等.开滦矿区深部开采中巷道围岩稳定性研究[J].岩石力学与工程学报,2005, 24(11):1857-1862. JIANG Yaodong, LIU Wengang, ZHAO Yixin,et al. Study on surrounding rock stability of deep mining in kailuan mining group[J]. Chinese Journal of Rock Mechanics and Engineering. 2005, 24(11): 1857-1862.
[4] 康红普,王金华,林健.高预应力强力支护系统及其在深部巷道中的应用[J].煤炭学报,2007,32(12):1233-1238. KANG Hongpu, WANG Jinhua, LIN Jian. High pretensioned stress and in tensive bolting system and itsapplication in deep roadways[J]. Journal of China Coal Society, 2007, 32(12): 1233-1238.
[5] 郭保华,陆庭侃.深井巷道底鼓机理及切槽控制技术分析[J].采矿与安全工程学报,2008,25(1):91-94. GUO Baghua, LU Tingkan. Analysis of floor heave mechanismand cutting control technique in deep mines [J]. Journal of M ining Safety Engineering, 2008, 25 (1): 91-94.
[6] 王猛,王襄禹,肖同强.深部巷道钻孔卸压机理及关键参数确定方法与应用[J].煤炭学报,2017,42(05):1138-1145. WANG Meng, WANG Xiangyu, XIAO Tongqiang. Borehole destressing mechanism and determination method of itskey parameters in deep roadway[J]. Journal of China Coal Society, 2017, 42(5): 1138-1145.
[7] 陈勇,郝胜鹏,陈延涛,等.带有导向孔的浅孔爆破在留巷切顶卸压中的应用研究[J].采矿与安全工程学报,2015,32(2):253-259. CHEN Yong, HAO Shengpeng, CHEN Yantao,et al. Study on the application of short-hole blasting with guide holeto roof cutting pressure relief of gob-side entry retaining[J]. Journal of Mining & Safety Engineering, 2015, 32(2): 253-259.
[8] 孙晓明,刘鑫,梁广峰,等.薄煤层切顶卸压沿空留巷关键参数研究[J].岩石力学与工程学报,2014,33(7):1449-1456. SUN Xiaoming, LIU Xin, LIANG Guanofeng, et al. Key parameters of gob-sie entry retaining formedby roof cut and pressure releasing in thin coal seams[J]. Chinese Journal of Rock Mechanics and Engineering,2014, 33(7): 1449-1456.
[9] 侯朝炯.深部巷道围岩控制的关键技术研究[J].中国矿业大学学报,2017,46(5):970-978. HOU Chaojiong. Key technologies for surrounding rock control in deep roadway[J]. Journal of China University of Mining & Technology, 2017, 46(5): 970-978.
[10] 许兴亮,魏灏,田素川,等.综放工作面煤柱尺寸对顶板破断结构及裂隙发育的影响规律[J].煤炭学报,2015,40(4):850-855. XU Xingliang, WEI Hao, TIAN Suchuan, et al. Study on influence law of coal pillar size on roof break structure andfracture development in fully mechanized working face[J]. Journal of China Coal Society, 2015, 40(4): 850-855.
[11] 何满潮.深部软岩工程的研究进展与挑战[J].煤炭学报,2014,39(8):1409-1417. HE Manchao. Progress and challenges of soft rock engineering in depth[J]. Journal of China Coal Society, 2014, 39(8): 1409-1417.
[12] 张广超,何富连,来永辉,等.高强度开采综放工作面区段煤柱合理宽度与控制技术[J].煤炭学报,2016, 41(9):2188-2194. ZHANG Guangchao, HE Fulian, LAI Yonghui, et al.Reasonable width and control technique of segment coal pillar withhigh-intensity fully-mechanized caving mining[J]. Journal of China Coal Society, 2016, 41(9): 2188-2194.
[13] 张永将,黄振飞,李成成.高压水射流环切割缝自卸压机制与应用[J].煤炭学报,2018,43(11):3016. ZHANG Yongjiang. HUANG Zhenfei, LI Chengcheng. Investigation and application of high pressure water jet annularityslotting self pressure release mechanism[J].Journal of China Coal Society, 2018, 43(11): 3016
[14] 李永军,孙亮.大采高综采工作面矿压显现及水力压裂切顶卸压技术研究[J].煤炭与化工,2018,41(12):1-3. LI Yongjun, SUN Liang. Study on mine pressure behavior and hydraulic fracturing roof cutting and unloading technology in fully mechanized mining face with large mining height[J]. Coal and Chemical Industry, 2018, 41(12): 1-3.
计量
- 文章访问数: 12
- HTML全文浏览量: 0
- PDF下载量: 0