• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

综采工作面砂岩夹矸层酸化压裂破碎机理

邓广哲, 刘 华

邓广哲, 刘 华. 综采工作面砂岩夹矸层酸化压裂破碎机理[J]. 煤矿安全, 2021, 52(3): 75-83.
引用本文: 邓广哲, 刘 华. 综采工作面砂岩夹矸层酸化压裂破碎机理[J]. 煤矿安全, 2021, 52(3): 75-83.
DENG Guangzhe, LIU Hua. Fracture mechanism of acid fracturing of sandstones gangue layer in fully mechanized mining face[J]. Safety in Coal Mines, 2021, 52(3): 75-83.
Citation: DENG Guangzhe, LIU Hua. Fracture mechanism of acid fracturing of sandstones gangue layer in fully mechanized mining face[J]. Safety in Coal Mines, 2021, 52(3): 75-83.

综采工作面砂岩夹矸层酸化压裂破碎机理

Fracture mechanism of acid fracturing of sandstones gangue layer in fully mechanized mining face

  • 摘要: 以榆林小保当矿区112201大采高工作面煤层砂岩夹矸层为研究对象,通过夹矸层砂岩物理力学化学性质综合性实验分析,提出了以微量CO2水合物为主的复配专用岩石酸化压裂方法。对高压CO2耦合溶液作用下砂岩中矿物溶蚀的物理化学机理进行研究,分析了高压酸化压裂引起的岩石微观结构变化共同作用下的岩层变形破坏特征及孔渗影响规律。结果显示:CO2水合物酸化专用压裂方法,对夹矸砂岩组成中方解石和白云石组分的影响显著,高岭石膨胀作用增强,压裂液溶蚀孔隙数量显著增多,孔径变大,综合孔隙度和渗透率均增大。通过开采验证,煤层夹矸层CO2耦合压裂破碎后,与正常回采区段及常规水压致裂区段相比,耦合压裂区段工作面回采率显著提高,同时节能降耗效果最为明显。
    Abstract: Taking the coal seam sandstone intercalated gangue layer at 112201 large mining height face in Xiaobaodang Mining Area of Yulin as the research object, the special rock acid fracturing method based on trace CO2 hydrate is proposed through the comprehensive experimental analysis of the physical, mechanical, and chemical properties of the sandstone in gangue layer. The physical and chemical mechanism of mineral dissolution in sandstone under the action of high-pressure water fracturing fluid was studied, and the deformation and failure characteristics of the rock layer and the law of pore-permeability under rock microstructure changes caused by the action of high-pressure acid fracturing and were analyzed. The results show that the special fracturing method for CO2 hydrate acidification has a significant effect on the calcite and dolomite components in sandstone gangue composition, the kaolinite expansion is enhanced, the number of pores dissolved by the fracturing fluid is significantly increased, the pore diameter becomes larger, both composite porosity and penetration rate increase. Through mining verification, the coal extraction rate and average raw coal production are significantly improved after acid fracturing in the coal gangue layer, and the reduction of cutting energy consumption of the shearer is the most obvious.
  • [1] 林伯强.中国能源发展报告2019[M].北京:北京大学出版社,2020.
    [2] BP集团.BP世界能源统计年鉴2017[R].英国:BP集团,2017.
    [3] 米小瑞.薄煤层煤炭开采现状分析和对策[J].科技资讯,2011 (23):108-109.

    MI Xiaorui. Analysis and countermeasures of current situation of coal mining in thin coal seams[J]. Science & Technology Information, 2011(23): 108-109.

    [4] 冯宇峰.基于LS-DYNA的预裂爆破硬夹矸弱化技术研究[J].地下空间与工程学报,2016,12(S2):726.

    FENG Yufeng. Research on weakening technology of hard dirt band presplitting blasting based on LS-DYNA[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(S2): 726.

    [5] 邓广哲,王世斌,黄炳香.煤岩水压裂缝扩展行为特性研究[J].岩石力学与工程学报,2004,23(20):3489.

    DENG Guangzhe, WANG Shibin, HUANG Bingxiang. Research on behavior character of crack development induced by hydraulic fracturing in coal-rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(20): 3489.

    [6] DENG Guangzhe, ZHENG Rui. Reconstruction of 3D micro pore structure of coal and simulation of its mechanical properties[J]. Advances in Materials Science and Engineering, 2017(2017): 9.
    [7] 童碧,王力.下向穿层孔水力割缝施工工艺研究与应用[J].煤炭科学技术,2017,45(8):177-180.

    TONG Bi, WANG Li. Study and application of hydraulic slotting construction technique with downward passed through strata borehole[J]. Coal Science and Technology, 2017, 45(8): 177-180.

    [8] 张震东.液态CO2深孔预裂对坚硬煤层回采块煤率的影响[J].煤炭与化工,2016,39(7):7-8.

    ZHANG Zhendong. Influence of liquid CO2 deep hole pre-split to hard coal mining rate of lump coal[J]. Coal and Chemical Industry, 2016, 39(7): 7-8.

    [9] Ao X, Lu Y, Tang J, et al. Investigation on the physics structure and chemical properties of the shale treated by supercritical CO2[J]. International of CO2 Utilization, 2017(20): 274-281.
    [10] SINAL M L, LANCASTER G. Liquid CO2 fracturing: advantages and limitations[J]. Journal of Canadian Petroleum Technology, 1987, 26(5): 26-30.
    [11] LIU He, WANG Feng, ZHANG Jin, et al. Fracturing with carbon dioxide: application status and development trend[J]. Petroleum Exploration and Development, 2014, 41(4): 466-472.
    [12] ISHIDA T, AOYAGI K, NIWA T, et al. Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2[J]. Geophysical Research Letters, 2012, 39(16): L16309.
    [13] KIZAKI A, TANAKA H, OHASHI K, et al. Hydraulic fracturing in Inada granite and Ogino tuff with super critical carbon dioxide[R]. Seoul, Korea :ISRM Regional Symposium-7th Asian Rock Mechanics Symposium, 2012.
    [14] ZOU Yushi, LI Ning, MA Xinfang, et al. Experimental study on the growth behavior of supercritical CO2-induced fractures in a layered tight sandstone formation[J]. Journal of Natural Gas Science and Engineering, 2018, 49: 145-156.
    [15] ZHANG Xinwei, LU Yiyu, TANG Jiren, et al. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing[J]. Fuel, 2017, 190: 370-378.
    [16] 刘国军,鲜学福,周军平,等.超临界CO2致裂后页岩渗透率变化规律及影响因素[J].煤炭学报,2017,42(10):2670-2678.

    LIU Guojun, XIAN Xuefu, ZHOU Junping, et al. Dynamic permeability change of supercritical CO2 fractured shale and its influencing factors[J]. Journal of China Coal Society, 2017, 42(10): 2670-2678.

    [17] 卢义玉,廖引,汤积仁,等.页岩超临界CO2压裂起裂压力与裂缝形态试验研究[J].煤炭学报,2018,43(1):580-585.

    LU Yiyu, LIAO Yin, TANG Jiren, et al. Experimental study on fracture initiation pressure and morphology in shale using supercritical CO2 fracturing[J]. Journal of China Coal Society, 2018, 43(1): 580-585.

    [18] Lahann R, Mastalerz M, Rupp J A, et al. Influence of CO2 on New Albany Shale composition and pore structure[J]. International Journal of Coal Geology, 2013, 108(12): 2-9.
    [19] 肖娜,李实,林梅钦.CO2-水-方解石相互作用后岩石表观形貌及渗透率变化特征[J].科学技术与工程,2017,17(24):38-44.

    XIAO Na, LI Shi, LIN Meiqin. The influence of CO2-water-calcite interactions on surface texture and permeability of the calcite[J]. Science Technology and Engineering, 2017, 17(24): 38-44.

    [20] Busch A, Alles S, Gensterblum Y, et al. Carbon dioxide storage potential of shales[J].International Journal of Greenhouse Gas Control, 2008, 2(3): 297-308.
    [21] Morsy S, Hetherington C J, Sheng J J. Effect of low-concentration HCl on the mineralogical mechanical and physical properties of shale rocks[C]//Society of Petroleum Engineers. Eastern Regional Meeting, Pittsburgh, Pennsylvania, USA, 2013.
    [22] Wu W, Sharma M M. Acid fracturing in shales: effect of dilute acid on properties and pore structure of properties and pore structure of shale[J]. SPE Production and Operations, 2016.
    [23] Ma Jin. Researches on the Migration of Supercritical CO2 on Geological Storage Conditions[D]. Beijing: Tsinghua University, 2013.
  • 期刊类型引用(3)

    1. 桑树勋,皇凡生,单衍胜,周效志,刘世奇,韩思杰,郑司建,刘统,王梓良,王峰斌. 碎软低渗煤储层强化与煤层气地面开发技术进展. 煤炭科学技术. 2024(01): 196-210 . 百度学术
    2. 张佳伟. 煤层综放初采高回收技术与顶煤促放效果验证. 山东煤炭科技. 2024(08): 1-5+10 . 百度学术
    3. 方刚. 巴拉素井田富水煤层顶底板矿物岩石特征研究. 中国矿业. 2023(10): 181-188 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  46
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 6
出版历程
  • 发布日期:  2021-03-19

目录

    /

    返回文章
    返回