• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

极薄煤层跨采下伏大巷变形破坏规律研究

宋康磊, 王宏图, 万亮亮, 舒 才

宋康磊, 王宏图, 万亮亮, 舒 才. 极薄煤层跨采下伏大巷变形破坏规律研究[J]. 煤矿安全, 2021, 52(3): 49-54.
引用本文: 宋康磊, 王宏图, 万亮亮, 舒 才. 极薄煤层跨采下伏大巷变形破坏规律研究[J]. 煤矿安全, 2021, 52(3): 49-54.
SONG Kanglei, WANG Hongtu, WAN Liangliang, SHU Cai. Deformation and failure rules of underlying roadway of cross mining in ultra-thinness coal seam[J]. Safety in Coal Mines, 2021, 52(3): 49-54.
Citation: SONG Kanglei, WANG Hongtu, WAN Liangliang, SHU Cai. Deformation and failure rules of underlying roadway of cross mining in ultra-thinness coal seam[J]. Safety in Coal Mines, 2021, 52(3): 49-54.

极薄煤层跨采下伏大巷变形破坏规律研究

Deformation and failure rules of underlying roadway of cross mining in ultra-thinness coal seam

  • 摘要: 针对极薄煤层跨采下伏大巷变形破坏问题,采用地质雷达测定巷道松动圈和三维激光扫描仪监测巷道变形的研究方法,研究了大巷跨采条件下的松动圈大小及巷道变形规律。监测结果表明:大巷的剧烈变形并未发生在相应的工作面周围,而是落后工作面数十米的位置,其变形形式为巷道底板整体上鼓,最高达到287.4 mm;巷道两肩及巷顶未发生明显下沉破坏。大巷破坏原因为:受采动影响,大巷上覆岩层破坏导致大巷上部工作面采空区积水沿裂隙流入大巷周围,大巷围岩受水浸泡变软膨胀,同时,上部工作面的开挖使得巷道垂直方向应力获得释放,导致大巷底板向上抬升。鉴于跨采影响下导致巷道变形较大,对于类似情况建议将U型钢可伸缩支架的排距从1 m减小为0.8 m。
    Abstract: Aiming at the problem of deformation and destruction of the overlying roadway of overhead-mining in very thin seam, the research methods of measuring the roadway loosening circle and 3D laser scanner to monitor the deformation of the roadway using geological radar are studied. The monitoring results show that the severe deformation of the roadway does not occur around the corresponding working face, but is located in tens of meters behind the working face. Its deformation form is the overall floor heave, up to 287.4 mm; no obvious subsidence failure occurred on both shoulders and roof of roadway. The cause of the damage to the roadway is: due to the impact of mining, the damage of the overlying rock layer on the roadway causes the water in the goaf of the upper working face of the roadway to flow into the surrounding of the roadway along the cracks, and the excavation of the surface allows the stress in the vertical direction of the roadway to be released, causing the floor of the roadway to rise upward. In view of the large deformation of the roadway under the influence of cross mining, it is recommended to reduce the row spacing of the U-shaped steel telescopic support from 1 m to 0.8 m for similar situations.
  • [1] 李学华,杨宏敏,刘汉喜,等.动压软岩巷道锚注加固机理与应用研究[J].采矿与安全工程学报,2006(2):159-163.

    LI Xuehua, YANG Hongmin, LIU Hanxi, et al. Research on bolt-grouting reinforcement technology in dynamic pressure and soft rock roadway[J]. Journal of Mining & Safety Engineering, 2006 (2):159-163.

    [2] 李术才,王汉鹏,钱七虎,等.深部巷道围岩分区破裂化现象现场监测研究[J].岩石力学与工程学报,2008(8):1545-1553.

    LI Shucai, WANG Hanpeng, QIAN Qihu, et al. In-situ monitoring research on zonal disintegration of surrounding rock mass in deep mine roadways[J]. Chinese Journal of Rock Mechanics and Engineering, 2008(8):1545-1553.

    [3] 陆士良,孙永联,姜耀东.底板岩巷和邻近煤层巷道位置及跨采矿压显现规律[J].煤炭科学技术,1994(6):27-31.
    [4] 陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994 .
    [5] 陆士良,姜耀东,孙永联.巷道与上部煤层间垂距Z的选择[J].中国矿业大学学报,1993(1):4-10.

    LU Shiliang, JIANG Yaodong, SUN Yonglian. The selection of vertical distance z between roadway and its upper coal seam[J]. Journal of China University of Mining & Technology, 1993(1): 4-10.

    [6] 谢文兵,史振凡.工作面开采对底板岩巷稳定性的影响[J].中国矿业大学学报,2004(1):85-88.

    XIE Wenbing, SHI Zhenfan. Stability analyses of roadway surrounding rock induced by overhead mining[J]. Journal of China University of Mining & Technology, 2004(1): 85-88.

    [7] 谢文兵,史振凡.近距离跨采对巷道围岩稳定性影响分析[J].岩石力学与工程学报,2004(12):1986-1991.

    XIE Wenbing, SHI Zhenfan. Stability analysis of surrounding rock masses of roadwayunder overhead mining [J]. Chinese Journal of Rock Mechanics and Engineering, 2004(12): 1986-1991.

    [8] 孙志海,谢文兵,张佳文,等.跨采底板巷道围岩变形规律及其控制技术[J].煤炭技术,2016,35(9):65-67.

    SUN Zhihai, XIE Wenbing, ZHANG Jiawen, et al. Surrounding rock deformation regularity and control technology of soft rock roadway in floor during across mining [J]. Coal Technology, 2016, 35(9): 65-67.

    [9] 宋召谦,王振伟,车明.近距离跨采影响底板软岩巷道围岩控制技术[J].煤矿安全,2014,45(10):55-57.

    SONG Zhaoqian, WANG Zhenwei, CHE Ming. Surrounding rock controlling technology for soft rock roadway in floor influenced by short distance overhead mining[J].Safety in Coal Mines, 2014, 45(10): 55-57.

    [10] 魏世义,镐振,郜进海.高水平应力跨采巷道围岩控制技术[J].煤矿安全,2013,44(9):116-119.

    WEI Shiyi, GAO Zhen, TONG Jinhai. Surrounding rock control technology of roadway in high horizontal stress influenced by overhead mining[J]. Safety in Coal Mines, 2013, 44 (9): 116-119.

    [11] 李学华,姚强岭,张农,等.高水平应力跨采巷道围岩稳定性模拟研究[J].采矿与安全工程学报,2008,25(4):420-425.

    LI Xuehua, YAO Qiangling, ZHANG Nong, et al. Numerical simulation of stability of surrounding rock in high horizontal stress roadway under overhead mining [J]. Journal of Mining & Safety Engineering, 2008, 25(4): 420-425.

    [12] 田磊,谢文兵,荆升国,等.综放跨采巷道棚-索耦合协同支护技术[J].煤炭科学技术,2011,39(11):44.

    TIAN Lei, XIE Wenbing, JING Shengguo, et al. Framed timber and anchor coupling collective support technology for fully mechanized top coal mining face crossing over gateway[J]. Coal Science and Technology, 2011, 39(11): 44.

    [13] 刘传孝,杨永杰.跨采巷道围岩松动圈发育的结构特点[J].山东矿业学院学报,1998(2):39-42.

    LIU Chuanxiao, YANG Yongjie, WANG Deqing. The structural features of the broken ring of rock mass roadways round the under working face[J]. Journal of Shandong Mining Institute, 1998 (2): 39-42.

    [14] 郭志宏,董方庭.围岩松动圈与巷道支护[J].矿山压力与顶板管理,1995(S1):111-114.

    GUO Zhihong, DONG Fangting. Surrounding rock loose zone and roadway support[J]. Mine Pressure and Roof Management, 1995 (S1): 111-114.

    [15] 边小涛,赤孟博.巷道围岩松动圈测试研究[J].能源与环保,2019,41(5):151-154.

    BIAN Xiaotao, CHI Mengbo. Study on surrounding rock loose circle test of roadway[J]. China Energy and Environmental Protection, 2019, 41(5): 151-154.

    [16] 张晓宇,李者,朱世安.深井软岩巷道围岩松动圈测试及支护技术[J].煤矿安全,2016,47(5):94-96.

    ZHANG Xiaoyu, LI Zhe, ZHU Shi’an. Support technique of deep soft rock roadway based on loose circle test of surrounding rock[J]. Safety in Coal Mines,2016, 47(5): 94-96.

    [17] 谢雄耀,卢晓智,田海洋,等.基于地面三维激光扫描技术的隧道全断面变形测量方法[J].岩石力学与工程学报,2013,32(11):2214-2224.

    XIE Xiongyao, LU Xiaozhi, TIAN Haiyang, et al. Development of a modeling method for monitoring tunnel deformation based on terrestrial 3D laser scanning[J].Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2214-2224.

    [18] 刘晓阳,胡乔森,李慧娟.基于三维激光扫描技术的巷道顶板监测研究[J].中国煤炭,2017,43(7):81.

    LIU Xiaoyang, HU Qiaosen, LI Huijuan. Research on coal mine roof monitoring based on three-dimensional laser scanning technology[J]. China Coal, 2017,43(7):81.

    [19] 王黎明,刘夫晓,王新生.三维激光扫描技术在矿山巷道变形监测中的应用[J].矿山测量,2013(3):79.

    WANG Liming,LIU Fuxiao,WANG Xinsheng.Application of 3D laser scanning technology in deformation monitoring of mine roadway[J]. Mine Survey, 2013(3): 79-80.

    [20] 郭亮,李俊才,张志铖,等.地质雷达探测偏压隧道围岩松动圈的研究与应用[J].岩石力学与工程学报,2011,30(S1):3009-3015.

    GUO Liang, LI Juncai, ZHANG Zhikun. Research on surrounding rock loose zone of tunnel under unsymmetrical loading with ground penetrating radar and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 3009-3015.

    [21] 宋宏伟,王闯.地质雷达测试围岩松动圈的原理与实践[J].中国矿业大学学报,2002(4):43-46.

    SONG Hongwei, WANG Chuang. Principle of measuring broken rock zone around underground roadway with gpr and its application[J]. Journal of China University of Mining & Technology, 2002(4): 43-46.

    [22] GUO Gangye, KANG Hongpu, QIAN Deyu, et al. Mechanism for controlling floor heave of mining roadways using reinforcing roof and side wall sin underground coal mine[J]. Sustainability, 2018, 10(5): 1413.
计量
  • 文章访问数:  22
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 发布日期:  2021-03-19

目录

    /

    返回文章
    返回