采煤工作面顺层钻孔分段水力压裂增渗试验
Permeability enhancement test of staged hydraulic fracturing of bedding drilling borehole in working face
-
摘要: 低透气性突出煤层顺层钻孔预抽回采工作面瓦斯具有工程量大,抽采效率低等特点,为此,采用顺煤层分段水力压裂实现煤储层增透。寺家庄矿15#煤层属于低透气性突出煤层,在15301工作面开展了顺煤层分段水力压裂强化抽采试验,利用自主研发的拖动式双封隔器分段封孔装备及工艺,满足压裂孔稳定、快速封隔,可实现全孔段分三段及以上逐级开展压裂。对比压裂区和非压裂顺层钻孔瓦斯抽采效果,压裂区平均浓度为35.1%,非压裂区为6.0%,压裂区浓度是非压裂区的5.9倍;压裂区百孔纯量为3.6 m3/min,非压裂区为0.3 m3/min,压裂区百孔纯量是非压裂区的11.2倍。Abstract: In low permeability and outburst coal seam, the gas in the working face extracted by bedding drilling borehole has the characteristics of large amount of workload and low extraction efficiency. No.15 coal seam of Sijiazhuang Coal Mine belongs to the low permeability outburst coal seam. Staged hydraulic fracturing of bedding drilling borehole was carried out to enhance the extraction in 15301 working face. By using the self-developed drag type double packer section sealing equipment and technology, the fracturing hole can be stably and rapidly sealed, and the whole hole section can be divided into three or more sections for fracturing. Compare the gas drainage effect of drilling in fracture zone and non-fracture zone, the average concentration of fractured area is 35.1%, and that of non-fractured area is 6.0%. The concentration of fractured area is 5.9 times of that of non-fractured area. The pure flow rate of 100 holes in fractured area is 3.6 m3/min, and that in the non-fractured area is 0.3 m3/min. The pure flow rate of 100 holes in the fractured are is 11.2 times of that in the non-fractured area.
-
-
[1] 国家能源局.煤层气(煤矿瓦斯)开发利用“十三五”规划[R].北京:国家能源局,2016. [2] 袁亮.国深部煤与瓦斯共采战略思考[J].煤炭学报,2016,41(1):1-6. YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Joumal of China Coal Society, 2016, 41(1): 1-6.
[3] 周西华,周丽君,范超军,等.低透煤层水力压裂促进瓦斯抽采模拟与试验研究[J].中国安全科学学报,2017, 27(10):81-86. ZHOU Xihua, ZHOU Lijun, FAN Chaojun, et al. Simulating and experimental study on enhancing gas drainage from low permeability coal seam by hydraulic fracturing[J]. China Safety Science Journal, 2017, 27(10): 81-86.
[4] 汪有刚,李宏艳,齐庆新,等.采动煤层渗透率演化与卸压瓦斯抽放技术[J]煤炭学报,2010,35(3):406-410. WANG Yougang, LI Hongyan, QI Qingxin, et al. The evolution of permeability and gas extraction technology in mining coal seam[J]. Joumal of China Coal Society, 2010, 35(3): 406-410.
[5] 袁亮,林柏泉,杨威.我国煤矿水力化技术瓦斯治理研究进展及发展方向[J].煤炭科学技术,2015,43(1):45. YUAN Liang, LIN Baiquan, YANG Wei. Research progress and development direction of gas control with mine hydraulic technology in China coal mine[J]. Coal Science and Technology, 2015, 43(1): 45.
[6] 杜春志,茅献彪,卜万奎.水力压裂时煤层缝裂的扩展分析[J].采矿与安全工程学报,2008,25(2):231-234. DU Chunzhi, MAO Xianbiao, BU Wankui. Analysis of fracture propagation in coal seams during hydraulic fracturing[J]. Journal of Mining & Safety Engineering, 2008, 25(2): 231-234.
[7] 黄炳香.煤岩体水力致裂弱化的理论与应用研究[D].徐州:中国矿业大学,2009. [8] 杨天鸿,唐春安,刘红元,等.水压致裂过程分析的数值试验方法[J].力学与实践,2001,23(5):51-54. YANG Tianhong, TANG Chunan, LIU Hongyuan, et al. Numerical tests of progressive failure in hydraulic fracturing[J]. Mechanics and Engineering, 2001, 23(5): 51-54.
[9] 龙威成,赵乐凯,陈冬冬,等.顺煤层定向长钻孔水力压裂煤层增透技术及试验研究[J].河南理工大学报,2019,38(3):10-15. LONG Weicheng, ZHAO Lekai, CHEN Dongdong, et al. Experimental study on coal seam permeability enhancement by directional long borehole hydraulic fracturing along seam direction[J]. Journal of Henan Polytechnic University, 2019, 38(3): 10-15.
[10] 姜集辉.低透气性煤层提高瓦斯抽放率的新途径[J].煤,2000(2):9-12. JIANG Jihui. New method of improving gas releasing rate from weak seepage seam[J].Coal, 2000(2): 9-12.
[11] 吕有厂.水力压裂技术在高瓦斯低透气性矿井中的应用[J]. 重庆大学报,2010,33(7):102. LV Youchang. Application the hydraulic fracturing technology in the high pressure and low permeability mine [J]. Journal of Chongqing University, 2010, 33(7): 102.
[12] 张文杰,周创兵,李俊平,等.裂隙岩体渗流特性物模试验研究进展[J].岩土力学,2005,26(9):1517-1524. ZHANG Wenjie, ZHOU Chuangbing, LI Junping, et al. Research progress of experimental study on seepage characteristic of fractured rock masses[J]. Rock and Soil Mechanics, 2005, 26(9): 1517-1524.
[13] 张国华,魏光平,侯凤才,等.穿层钻孔起裂注水压力与起裂位置理论[J].煤炭学报,2007,32(1):52-55. ZHANG Guohua, WEI Guangping, HOU Fengcai, et al. Theory of start-split affusion stress and start-split location about through coal delaminaions’ bore of hydraulic fracture[J]. Joumal of China Coal Society, 2007, 32(1): 52-55.
[14] 林柏泉,孟杰,宁俊,等.含瓦斯煤体水力压裂动态变化特征研究[J].采矿与安全工程学报,2012,29(1): 106-110. LIN Baiquan, MENG Jie, NING Jun, et al. Research on dynamic characteristics of hydraulic fracturing in coal body containing gas[J]. Journal of Mining and Safety Engineering, 2012, 29(1):106-110.
[15] 巫修平.碎软低渗煤层顶板水平井分段压裂裂缝扩展规律及机制研究[D].北京:煤炭科学研究总院,2017. [16] 张群,葛春贵,李伟,等.碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J].煤炭学报,2018,43(1):150-159. ZHANG Qun, GE Chungui, LI Wei, et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J]. Joumal of China Coal Society, 2018, 43(1): 150-159.
[17] 孙四清,张群,闫志铭,等.碎软低渗高突煤层井下长钻孔整体水力压裂增透工程实践[J].煤炭学报,2017,49(9):2377-2344. SUN Siqing, ZHANG Qun, YAN Zhiming, et al. Practice of permeability enhancement through overall hydraulic fracturing of long hole in outburst-prone soft crushed coal seam with low permeability[J]. Journal of China Coal Society, 2017, 49(9): 2377-2344.
[18] 富向.井下点式水力压裂增透技术研究[J].煤炭学报, 2011,36(8):1317-1321. FU Xiang. Study of underground point hydraulic fracturing increased permeability technology[J]. Journal of China Coal Society, 2011, 36(8): 1317-1321.
[19] 杨宏伟.低透气性煤层井下分段点式水力压裂增透[J].北京科技大学学报,2012,34(11):1235-1239. YANG Hongwei. Underground segmentation point hydraulic fracturing antireflection for low-permeability coal seams[J]. Journal of University of Science and Technology Beijing, 2012, 34(11): 1235-1239.
-
期刊类型引用(3)
1. 张琨,张忍杰,任建喜,刘政,宋嘉炜. 冲击荷载作用下煤岩力学特性研究及能量演化特征. 煤炭技术. 2024(02): 1-5 . 百度学术
2. 任智敏,吕梦蛟,王神虎,王禹,张广太. 大断面六边形巷道周边应力分布及其支架设计. 采矿与岩层控制工程学报. 2023(06): 28-42 . 百度学术
3. 赵凌云,魏元龙,刘伟,张雄. 汪家寨煤岩各向异性的力学特性研究. 地下空间与工程学报. 2022(S2): 603-610 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 45
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 8