H2O2预处理联合生物厌氧降解对烟煤孔隙的影响
Effect of H2O2 pretreatment combined with anaerobic biodegradation on pore structure of bituminous coal
-
摘要: 为研究H2O2预处理联合生物降解对煤孔隙的影响,利用浓度为0.05 %H2O2对烟煤进行预处理,采用煤层气产出水富集获得的高效菌群进行厌氧降解煤产甲烷实验,通过气相色谱仪检测甲烷含量,通过低温液氮吸附对煤孔隙发育变化进行表征。结果表明:利用H2O2预处理烟煤显著提高了生物甲烷产量;预处理对煤孔隙类型没有显著影响,但残煤的吸附量减少,有利于原位煤层气的抽采;经预处理后,煤样的微孔和中孔孔容增加,而过渡孔孔容降低。经生物降解后,残煤的总孔容和比表面积均显著降低,可能是微生物代谢产生的可溶有机质滞留积累在煤中,从而堵塞了煤孔隙所导致。Abstract: To study the effect of H2O2 pretreatment combined with biodegradation on coal pores, the bituminous coal was pretreated with 0.05% H2O2, and the high-efficiency methanogenic microflora derived from the produced water of active coalbed methane(CBM) wells was used for anaerobic degradation of coal. The content of biomethane was detected by gas chromatograph and the development of coal pores was characterized by low-temperature liquid nitrogen adsorption. The results showed that H2O2 pretreatment of bituminous coal could significantly enhance biomethane production. Pretreatment had no significant effect on the type of coal pores, but the adsorption capacity of residual coal was reduced, which was conducive to the extraction of in-situ CBM. After pretreatment, the micro-pores and meso-pores volume of coal sample increased, while the transitional pores volume decreased. After biodegradation, the total pore volume and specific surface area of residual coal were significantly reduced; this may be caused by the retention and accumulation of soluble organic matter produced by microbial metabolism in the coal, thus blocking the pores of the coal.
-
Keywords:
- H2O2 pretreatment anaerobic degradation /
- bituminous coal /
- biomethane /
- coal pores
-
-
[1] Strapoc Dariusz, Mastalerz Maria, Dawson Katherine, et al. Biogeochemistry of microbial coal-bed methane[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 617-656. [2] 郭红光,王飞,李治刚.微生物增产煤层气技术研究进展[J].微生物学通报,2015,42(3):584-590. GUO Hongguang, WANG Fei, LI Zhigang. Research progress of microbially enhanced coalbed methane[J].Microbiology China, 2015, 42(3): 584-590.
[3] Huang Z, M A Urynowicz, P J S Colberg. Stimulation of biogenic methane generation in coal samples following chemical treatment with potassium permanganate[J]. Fuel, 2013, 111: 813-819. [4] 李兴凤,郭红光,张亦雯,等.NaOH预处理对无烟煤生物甲烷转化的影响[J].煤矿安全,2019,50(11):6-9. LI Xingfeng, GUO Hongguang, ZHANG Yiwen, et al. Effect of NaOH pretreatment on biomethane conversion in anthracite[J].Safety in Coal Mines, 2019, 50(11): 6-9.
[5] LIU Fangjing, GUO Hongguang, WANG Qiurong, et al. Characterization of organic compounds from hydrogen peroxide-treated subbituminous coal and their composition changes during microbial methanogenesis[J]. Fuel, 2019, 237: 1209-1216. [6] Chen Tianyu, Rodrigues Sandra, Golding Suzanne D, et al. Improving coal bioavailability for biogenic methane production via hydrogen peroxide oxidation[J]. International Journal of Coal Geology, 2018, 195: 402-414. [7] 王恩元,何学秋.煤岩等多孔介质的分形结构[J].焦作工学院学报,1996,15(4):19-23. WANG Enyuan, HE Xueqiu. Fractal structure of coal, rock and other porous media[J]. Journal of Jiaozuo Institute of Technology, 1996, 15(4): 19-23.
[8] ZHANG Rui, LIU Shimin, Bahadur Jitendra, et al. Changes in pore structure of coal caused by coal-to-gas bioconversion[J]. Scientific Reports, 2017, 7(1): 3840. [9] 夏大平,郭红玉,马俊强,等.生物甲烷代谢对煤孔隙结构的影响[J].天然气地球科学,2014,25(7):1097. XIA Daping, GUO Hongyu, MA Junqiang, et al. Impact of biogenic methane metabolism on pore structure of coals[J]. Natural Gas Geoscience, 2014, 25(7): 1097.
[10] 张亦雯,郭红光,李亚平,等.过氧化氢预处理中/高煤阶煤增产生物甲烷研究[J].煤炭科学技术,2019,47(9):262-267. ZHANG Yiwen, GUO Hongguang, LI Yaping, et al. Study on medium/high rank coal-producing methane with hydrogenperoxide pretreatment[J]. Coal Science and Technology, 2019, 47(9): 262-267.
[11] GUO Hongguang, CHENG Yatong, Zaixing Huang, et al. Factors affecting co-degradation of coal and straw to enhance biogenic coalbed methane[J]. Fuel, 2019, 244: 240-246. [12] Hodot B B. Outburst of coal and coalbed gas(Chinese Translation)[M].Beijing:China Coal Industry Press, 1966. [13] Thommes Matthias, Kaneko Katsumi, Neimark Alexander V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution(IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9-10): 1051-1069. [14] 叶志伟.许疃矿烟煤瓦斯吸附渗流特性及注气驱替瓦斯实验研究[D].徐州:中国矿业大学,2018. [15] Fitzgerald J E, Pan Z, Sudibandriyo M, et al. Adsorption of methane, nitrogen, carbon dioxide and their mixtures on wet Tiffany coal[J]. Fuel, 2005, 84(18): 2351-2363. [16] 陈德仁,秦志宏,闫玉杰,等.煤中小分子化合物研究进展[EB/OL].北京:中国科技论文在线[2011-04-06]. [17] QIN Zhihong, JIANG Chun, HOU Cuili, et al. Solubilization of small molecules from coal and the resulting effects on the pore structure distribution[J]. Mining Science and Technology(China), 2009, 19(6): 761. [18] Tamamura Shuji, Murakami Takuma, Aramaki Noritaka, et al. Reaction of lignite with dilute hydrogen peroxide to produce substrates for methanogens at in situ subsurface temperatures[J]. International Journal of Coal Geology, 2016, 167: 230-237. [19] 张攀攀,郭红光,段凯鑫,等.无烟煤厌氧代谢产物对其纳米孔隙的影响[J/OL].煤炭学报:1-12[2020-04-03].https://doi.org/10.13225/j.cnki.jccs.2019.1263. -
期刊类型引用(7)
1. 张昊鹏,张丹,何环,任义,陈林勇,刘健,黄再兴. H_2O_2预处理胜利褐煤镜质组的生物产气研究. 微生物学报. 2024(06): 1960-1971 . 百度学术
2. 张娜,尹雪峰,王子琛,刘浩,黄敏婕,王浩,梁东旭,胡佳楠. 微生物增产煤层气作用机理及影响因素研究进展. 过程工程学报. 2024(06): 636-646 . 百度学术
3. 简阔,傅雪海,刘明杰,刘健,李晋,茹忠亮,吉小峰,王强. CO_2和H_2低压环境下煤微生物降解气化实验. 煤田地质与勘探. 2024(12): 72-83 . 百度学术
4. 夏大平,刘春兰,陈振宏,黄松,赵伟仲. 不同煤阶煤孔隙结构与煤制生物甲烷的相互影响. 煤炭转化. 2023(01): 27-38 . 百度学术
5. 简阔,傅雪海,夏大平,冯睿智,李咪,吉小峰. 我国次生生物成因煤层气研究进展. 煤矿安全. 2023(04): 11-21 . 本站查看
6. 张远远,薛生,李峰. 原生微生物降解煤对煤体孔隙结构影响的研究. 安全. 2023(09): 23-30 . 百度学术
7. 李洋,唐书恒,陈健,陈萍. 影响煤生物气化的物化特征及煤预处理的研究进展. 微生物学报. 2022(06): 2328-2339 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 17
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 8