• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

卸压煤体缓冲吸能效应模拟分析

李小亮, 郭伟耀, 尹延春, 肖亚勋, 汤兴学

李小亮, 郭伟耀, 尹延春, 肖亚勋, 汤兴学. 卸压煤体缓冲吸能效应模拟分析[J]. 煤矿安全, 2021, 52(2): 201-206.
引用本文: 李小亮, 郭伟耀, 尹延春, 肖亚勋, 汤兴学. 卸压煤体缓冲吸能效应模拟分析[J]. 煤矿安全, 2021, 52(2): 201-206.
LI Xiaoliang, GUO Weiyao, YIN Yanchun, XIAO Yaxun, TANG Xingxue. Simulation analysis of buffer energy absorption effect of pressure-relief coal[J]. Safety in Coal Mines, 2021, 52(2): 201-206.
Citation: LI Xiaoliang, GUO Weiyao, YIN Yanchun, XIAO Yaxun, TANG Xingxue. Simulation analysis of buffer energy absorption effect of pressure-relief coal[J]. Safety in Coal Mines, 2021, 52(2): 201-206.

卸压煤体缓冲吸能效应模拟分析

Simulation analysis of buffer energy absorption effect of pressure-relief coal

  • 摘要: 为了研究卸压煤体对冲击能量的缓冲吸能效应,利用颗粒流软件建立了巷道围岩局部模型,分析了完整煤体与卸压煤体对冲击能量的缓冲吸能效果,不同损伤度和破碎深度卸压煤体的缓冲吸能效果,不同损伤度和破碎深度条件下支护体受力变化。结果表明:与完整煤体相比,损伤度40%卸压煤体对冲击能量的消耗是完整煤体的2倍,卸压煤体吸能效果远高于完整煤体;随着卸压煤体损伤度或破碎深度增加,静载作用下支护体受力递增,但冲击作用下支护体受力递减,强卸压煤体对冲击能量的缓冲效果更明显,但静载下支护强度相应增加;当卸压煤体的损伤度在40%,破碎深度为3 m时,卸压煤体能达到较为理想缓冲吸能效果。
    Abstract: In order to study the buffering and energy absorption effect of pressure-relief coal on impact energy, the local model of the surrounding rock of the roadway was established by the particle flow software. We analyzed the impact energy buffering effect of the intact coal body and the pressure-relief coal body, and buffer energy absorption effect of pressure-relief coal with different damage degrees and broken depths, changes in the force of the supporting body under the conditions of different damage degrees and fracture depths. The results show: compared with the intact coal body, the impact energy consumption of the pressure-relief coal body with a damage degree of 40% is twice that aof the intact coal body, and the energy absorption effect of the pressure-relief coal body is much higher than that of the intact coal body; with the increase of the damage degree or crushing depth of the pressure-relief coal body, the force of the support body under the static load increases, but the force of the support body decreases under the impact action, the buffer effect of the strong pressure-relief coal body on the impact energy is more obvious, but the support strength under static load increases accordingly; when the damage degree of the pressure relief coal body is 40% and the crushing depth is 3 meters, the pressure-relief coal body can achieve an ideal buffering energy absorption effect.
  • [1] 姜耀东, 潘一山, 姜福兴, 等.我国煤炭开采中的冲击地压机理和防治[J].煤炭学报,2014,39(2):205-213.

    JIANG Yaodong, PAN Yishan, JIANG Fuxing, et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society, 2014, 39(2): 205-213.

    [2] 姜耀东.煤岩冲击失稳的机理和实验研究[M].北京:科学出版社,2009:8-24.
    [3] 潘一山,李忠华,章梦涛.我国冲击地压分布、类型、机理及防治研究[J].岩石力学与工程学报,2003,22(11):1844-1851.

    PAN Yishan, LI Zhonghua, ZHANG Mengtao. Distribution, type, mechanism, and prevention of rockbrust in china[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1844-1851.

    [4] 何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报, 2005,24(16):2803-2813.

    HE Manchao, XIE Heping, PENG Suping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813.

    [5] 赵同彬,郭伟耀,谭云亮,等.煤厚变异区开采冲击地压发生的力学机制[J].煤炭学报,2016,41(7):1659.

    ZHAO Tongbin, GUO Weiyao, TAN Yunliang, et al. Mechanics mechanism of rockburst caused by mining in variable region of coal thickness[J]. Journal of China Coal Society, 2016, 41(7): 1659-1666.

    [6] COOK NG W, HOEK E, PRETORIUS J P G, et al. Rock mechanics applied to the study of rockbursts[J]. Journal of the South African Institute of Mining and Metallurgy, 1966, 66: 435-528.
    [7] PETUKHOV I M, LINKOV A M. The theory of rockbursts and outburst[M]. Moscow: Nedra, 1983.
    [8] 李玉生.冲击地压机理及其初步应用[J].中国矿业大学学报,1985(3):42-48.

    LI Yusheng. Rockburst mechanism and its preliminary application[J]. Journal of China Institution of Mining and Technology, 1985(3): 42-48.

    [9] 窦林名,陆菜平,牟宗龙,等.冲击矿压的强度弱化减冲理论及其应用[J].煤炭学报,2005,30(6):690.

    DOU Linming, LU Caiping, MU Zonglong, et al. The theory of intensity weakening for rockburst and its application[J]. Journal of China Coal Society, 2005, 30(6): 690.

    [10] 于正兴,姜福兴,桂兵,张安元.防治冲击地压的应力三向化理论研究及应用[J].煤炭科学技术,2011, 39(7):1-4,52.

    YU Zhengxing, JIANG Fuxing, GUI Bing, et al. Study and application of stress three-dimensional theory to prevention and control of mine pressure bumping[J]. Coal Science and Technology, 2011, 39(7): 1-4,52.

    [11] 周立春,魏全德,杜建鹏.煤层钻孔“双低”防冲机理及应用[J].煤矿安全,2014,45(9):158-161.

    ZHOU Lichun, WEI Quande, DU Janpeng. “Double low” rock burst prevention mechanism for drillhole and its application[J]. Journal of Safety in Coal Mines, 2014, 45(09):158-161.

    [12] 谭云亮,郭伟耀,赵同彬,等.深部煤巷帮部失稳诱冲机理及“卸-固”协同控制研究[J].煤炭学报,2020,45(1):66-81.

    TAN Yunliang, GUO Weiyao, ZHAO Tongbin, et al. Coal rib burst mechanism in deep roadway and “stress relief-support reinforcement” synergetic control and prevention[J]. Journal of China Coal Society, 2020, 45(1): 66-81.

    [13] 谭云亮,郭伟耀,辛恒奇,等.煤矿深部开采冲击地压监测解危关键技术研究[J].煤炭学报,2019,44(1):160-172.

    TAN Yunliang, GUO Weiyao, XIN Hengqi, et al. Key technology of rock burst monitoring and control in deep coal mining[J]. Journal of China Coal Society, 2019, 44(1): 160-172.

    [14] 代志旭,刘强.千米级深井上保护层开采下伏煤层卸压效果研究[J].煤矿安全,2019,50(4):12-15.

    DAI Zhixu, LIU Qiang. Study on pressure unloading effect of lower coal seam under upper protective layer in a kilometer deep well[J]. Safety of Coal Mine, 2019, 50(4): 12-15.

    [15] 刘红岗,徐金海.煤巷钻孔卸压机理的数值模拟与应用[J].煤炭科技,2003(4):37-38.

    LIU Honggang, XU Jinhai. Numerical simulation and application of pressure relief mechanism of coal roadway drilling[J]. Coal Science & Technology Magazine, 2003(4): 37-38.

    [16] 田昭军,王永,冯美华.冲击地压煤层爆破卸压效果分析[J].能源与环保,2018,40(9):58-62.

    TIAN Zhaojun, WANG Yong, FENG Meihua. Effect analysis of pressure relief using blasting of coal seam with rock burst danger[J]. China Energy and Environmental Protection, 2018, 40(9): 58-62.

    [17] 何岗,杨建业.扇形钻孔卸压冲击地压防治实践[J].煤炭科技,2018(3):74-75.

    HE Gang, YANG Jianye. Practice of rock burst prevention of fan-shaped boreholes pressure relief[J]. Coal Science & Technology Magazine, 2018(3):74-75.

    [18] 薛伟超.深部厚煤层综采工作面冲击地压防治技术[J].煤矿安全,2017,48(1):81-83.

    XUE Weichao. Rock burst prevention and control technology of fully mechanized coal mining face for deep thick seam[J]. Safety in Coal Mines, 2017, 48(1): 81-83.

    [19] 李跃文,刘赛,曹安业,等.卸压钻孔对巷道煤体卸压效应的数值分析及应用[J].煤炭工程,2016,48(11):50-53.

    LI Yaowen, LIU Sai, CAO Anye, et al. Numerical analysis and application of coal pressure relief effect with drillings in roadway[J]. Coal Engineering, 2016, 48(11): 50-53.

    [20] 刘华博,赵毅鑫,姜耀东,等.综放工作面煤层大直径钻孔卸压防灾技术[J].煤矿安全,2018,49(5):79.

    LIU Huabo, ZHAO Yixin, JIANG Yaodong, et al. Pressure relief and disaster prevention technology by large diameter borehole in fully mechanized caving face[J]. Safety in Coal Mines, 2018, 49(5): 79.

  • 期刊类型引用(6)

    1. 韩瑞达. 基于GIS与AHP的煤层顶板涌(突)水危险性研究. 地质装备. 2025(01): 25-32 . 百度学术
    2. 董绪峰. 承压水上含陷落柱构造煤层底板渗流路径研究. 煤炭科技. 2025(01): 105-109 . 百度学术
    3. 魏启明,赵宝峰,马进勇,张泽源,马志贤. 煤层底板砂岩含水层水文地质特征的分布式放水试验探查研究. 中国煤炭. 2024(05): 32-39 . 百度学术
    4. 刘艳冬,刘滢,卢兰萍,白峰青,王铁记,卫皓皓. 基于ZOA-CNN-GRU模型的煤层底板突水等级预测. 中国煤炭. 2024(06): 44-51 . 百度学术
    5. 杨茹蕙,李小萌,王铁记. 基于IAHP-EWM博弈论的煤层底板突水影响因素研究. 煤炭与化工. 2024(07): 43-47+52 . 百度学术
    6. 安律宁,陈继福,董广铭,李玉兵. 基于层次聚类模糊综合评判的矿井突水危险性评价. 煤炭与化工. 2023(10): 49-56 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  37
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 8
出版历程
  • 发布日期:  2021-02-19

目录

    /

    返回文章
    返回