• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

扩底补填对防止煤巷树脂锚杆滑移失效的试验研究

南 华, 王 帅, 王金瑞, 罗 明

南 华, 王 帅, 王金瑞, 罗 明. 扩底补填对防止煤巷树脂锚杆滑移失效的试验研究[J]. 煤矿安全, 2021, 52(2): 54-62.
引用本文: 南 华, 王 帅, 王金瑞, 罗 明. 扩底补填对防止煤巷树脂锚杆滑移失效的试验研究[J]. 煤矿安全, 2021, 52(2): 54-62.
NAN Hua, WANG Shuai, WANG Jinrui, LUO Ming. Experimental study on preventing slippage failure of resin bolt in coal roadway by backfilling with enlarged bottom[J]. Safety in Coal Mines, 2021, 52(2): 54-62.
Citation: NAN Hua, WANG Shuai, WANG Jinrui, LUO Ming. Experimental study on preventing slippage failure of resin bolt in coal roadway by backfilling with enlarged bottom[J]. Safety in Coal Mines, 2021, 52(2): 54-62.

扩底补填对防止煤巷树脂锚杆滑移失效的试验研究

Experimental study on preventing slippage failure of resin bolt in coal roadway by backfilling with enlarged bottom

  • 摘要: 采用数值模拟研究扩底补填锚固系统各部件的位移、应力分布状态,结合现场试验对比分析扩底反充锚固与正常锚固相比对控制巷道变形、提高锚固能力的情况。数值模拟结果表明:扩孔最大直径越大,锚杆轴向稳定力越大,锚固系统越稳定;以施加轴向载荷150 kN为例,扩底补填锚固时钻孔围岩的最大应力值是正常锚固的2.9倍,扩底补填锚固时锚固剂的最大应力值是正常锚固的2.8倍,围岩和锚固剂的变形均小于正常锚固;5倍以上的扩底补填锚固各部件位移变化量基本相等,得出5倍扩底补填锚固的可行性最好。现场试验结果表明,扩底补填锚网支护的顶板变形总量、变形速率均小于正常支护,锚固系统的锚固能力提高了2.1倍,扩底补填对防止煤巷树脂锚杆滑移失效效果明显。
    Abstract: This paper adopts numerical simulation to study the displacement and stress distribution states of each component of the bottom-expanding filling anchorage system, and analyzes the change of controlling roadway deformation and improving anchorage capacity of backfilling anchorage of bottom-expanding filling system compared with normal anchorage by combining with field tests. Numerical simulation results show that the larger the maximum diameter of reaming is, the greater the axial stabilizing force is and the more stable the anchoring system is. Taking the axial load of 150 kN as an example, the maximum stress value of the borehole surrounding rock is 2.9 times that of the normal anchorage when the bottom is enlarged and the anchorage is filled. The maximum stress value of anchoring agent is 2.8 times that of normal anchoring during filling anchorage with bottom expansion. The deformation of surrounding rock and anchoring agent is less than that of normal anchoring. The displacement variation of each part is basically the same for more than five times of filling and anchoring, it is concluded that the five-fold expansion of the bottom is the most feasible. The results of field test show that the total amount of roof deformation and the deformation rate are smaller than the normal support. The anchoring capacity of the anchoring system increased by 2.1 times.
  • [1] 郭东明,韩笑,杨俊,等.不同速率树脂锚固剂组合的拉拔力学性能试验[J].煤矿安全,2019,50(6):58.

    GUO Dongming, HAN Xiao, YANG Jun, et al. Mechanical properties test of resin anchoring agent combination with different rates[J]. Safety in Coal Mines, 2019, 50(6): 58-61.

    [2] 康红普,王金华,林健.煤矿巷道支护技术的研究与应用[J].煤炭学报,2010,35(11):1809-1814.

    KANG Hongpu, WANG Jinhua, LIN Jian. Study and applications of roadway support techniques for coal mines[J]. Journal of China Coal Society, 2010, 35(11): 1809-1814.

    [3] 康红普,王金华.煤巷锚杆支护理论与成套技术[M].北京:煤炭工业出社,2007.
    [4] 康红普.我国煤矿巷道锚杆支护技术发展60 年及展望[J].中国矿业大学学报,2016,45(6):1071-1081.

    KANG Hongpu. Sixty years development and prospects of rock bolting technology for underground coal mine roadways in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 45(6): 1071-1081.

    [5] 单仁亮,彭杨皓,孔祥松,等.国内外煤巷支护技术研究进展[J].岩石力学与工程学报,2019,38(12):2377-2403.

    SHAN Renliang, PENG Yanghao, KONG Xiangsong, et al. Research progress of coal roadway support technology at home and abroad[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2377-2403.

    [6] 周攀.巷道锚杆支护围岩加固体稳定性评价方法研究[D].西安:西安科技大学,2019.
    [7] 罗怀廷.浅埋三软厚泥岩顶板煤巷破坏特征与控制技术[J].煤矿安全,2018,49(10):95-98.

    LUO Huaiting. Analysis of failure characteristics and control technology of shallow buried and three-soft coal roadway with thick mudstone roof[J]. Safety in Coal Mines, 2018, 49(10): 95-98.

    [8] 谢生荣,谢国强,何尚森.深部软岩巷道锚喷注强化承压拱支护机理及其应用[J].煤炭学报,2014,39(3):404-409.

    XIE Shengrong, XIE Guoqiang, HE Shangsen. Anchor-spray-injection strengthened bearing arch supporting mechanism of deep soft rock roadway and its application[J]. Journal of China Coal Society, 2014, 39(3): 404-409.

    [9] 张峰,刘学生,段化超.浅埋煤层软岩顶板巷道支护参数优化[J].煤矿安全,2014,45(4):180-182.

    ZHANG Feng, LIU Xuesheng, DUAN Huachao. Optimization of support parameters of roadway with soft roof in shallow seam[J]. Safety in Coal Mines, 2014, 45(4): 180-182.

    [10] 王忠昶,唐静,李伟,等.软岩巷道锚网-U型钢支架联合支护技术[J].煤矿安全,2014,45(12):156-159.

    WANG Zhongchang, TANG Jing, LI Wei, et al. Combination support of bolting-shotcreting-network and u-steel of soft rock roadway[J]. Safety in Coal Mines, 2014, 45(12): 156-159.

    [11] 李亮,姜彦军,于涛,等.“三软”厚顶煤回采巷道扩巷围岩稳定性及控制技术[J].煤矿安全,2019,50(10):107-111.

    LI Liang, JIANG Yanjun, YU Tao, et al. Surrounding rock stability and control technology of expanded roadway in “three-soft” thick top coal mining roadway[J]. Safety in Coal Mines, 2019, 50(10): 107-111.

    [12] 孙志海.赵家寨煤矿“三软”煤层沿空掘巷围岩控制技术研究[D].徐州:中国矿业大学,2018.
    [13] 江贝,李术才,王琦,等.三软煤层巷道破坏机制及锚注对比试验[J].煤炭学报,2015,40(10):2336.

    JIANG Bei, LI Shucai, WANG Qi, et al. Failure mechanism of three soft coal seam roadway and comparison study on bolt and grouting[J]. Journal of China Coal Society, 2015, 40(10): 2336-2346.

    [14] 王沉,屠世浩,李召鑫,等.深部“三软”煤层回采巷道断面优化研究[J].中国矿业大学学报,2015,44(1):9-15.

    WANG Chen, TU Shihao, LI Zhaoxin, et al. Section optimization of deep gateways in three soft coal seam[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 44(1): 9-15.

    [15] 谢小平,徐光,许瑞强.软岩轨道大巷围岩失稳机理及控制技术[J].煤矿安全,2019,50(1):161-164.

    XIE Xiaoping, XU Guang, XU Ruiqiang. Control technology and instability mechanism of main rail-tunnel with weak surrounding rock[J]. Safety in Coal Mines, 2019, 50(1): 161-164.

    [16] 文志杰,卢建宇,肖庆华,等.软岩回采巷道底臌破坏机制与支护技术[J].煤炭学报,2019,44(7):1991.

    WEN Zhijie, LU Jianyu, XIAO Qinghua, et al. Failure mechanism of floor heave and supporting technology of soft rock roadway[J]. Journal of China Coal Society, 2019, 44(7): 1991-1999.

    [17] 文竞舟,杨春雷,粟海涛.软弱破碎围岩隧道锚喷钢架联合支护的复合拱理论及应用研究[J].土木工程学报,2015(5):115-122.

    WEN Jingzhou, YANG Chunlei, SU Haitao. Theoretical analysis and application of composite arch for bolt-shotcrete steel frame supported tunnel in weak and fractured rock mass[J]. China Civil Engineering Journal, 2015(5): 115-122.

    [18] 王文杰,万浩.高应力软岩巷道全长锚固玻璃钢锚杆受力特征研究[J].采矿与安全工程学报,2019,36(3):482-490.

    WANG Wenjie,WAN Hao. Mechanical characteristics analysis of fully grouted GFRP rock bolts in highly stressed soft rock tunnels[J]. Journal of Mining & Safety Engineering, 2019, 36(3): 482-490.

    [19] 杨明,华心祝,毛永江.高膨胀性软岩巷道支护技术[J].煤矿安全,2014,45(12):89-91.

    YANG Ming. HUA Xinzhu. MAO Yongjiang. Support technology for high expansibility soft rock roadway [J]. Safety in Coal Mines, 2014, 45(12): 89-91.

    [20] 孙森,唐少安.三软煤层采场围岩控制原则与实践[J].煤炭科学技术,2014,42(12):37-40.

    SUN Sen, TANG Shaoan. Principle and practices on surrounding rock control of three soft seam[J]. Coal Science and Technology, 2014, 42(12): 37-40.

    [21] 孙文清,张朋寿,刘忠钊.软岩施工支护技术在装载硐室中的应用[J].煤矿安全,2014,45(4):149-151.

    SUN Wenqing, ZHANG Pengsh. Application of soft rock construction support technology in loading chamber[J]. Safety in Coal Mines, 2014, 45(4): 149-151.

    [22] 戚福周,吴亚州.破碎顶板松散煤巷支护技术与工艺[J].煤矿安全,2015,46(3):65-67.

    QI Fuzhou, WU Yazhou. Supporting technology and process for loose coal roadway with broken roof[J]. Safety in Coal Mines, 2015, 46(3):65-67.

    [23] 杨树军,刘爱卿.近距离煤层强烈动压巷道全锚索支护技术[J].煤矿安全,2014,45(3):83-85.

    YANG Shujun, LIU Aiqing. Whole anchor support technology of roadway with strong dynamic pressure in close distance seamr[J]. Safety in Coal Mines, 2014, 45(3): 83-85.

    [24] 周永兴.浅埋煤层大断面煤巷锚杆支护参数优化研究[D].西安:西安科技大学,2019.
    [25] 李怀珍.煤巷非全长锚固单元体锚杆滑移脱粘机理及应用研究[D].徐州:中国矿业大学,2018.
    [26] 李海洋.不同锚固长度下锚杆锚固特性研究[D].焦作:河南理工大学,2015.
    [27] 康红普,崔千里,胡滨,等.树脂锚杆锚固性能及影响因素分析[J].煤炭学报,2014,39(1):1-10.

    KANG Hongpu, CUI Qianli, HU Bin, et al. Analysis on anchorage performances and affecting factors of resin bolts[J]. Journal of China Coal Society, 2014, 39(1): 1-10.

    [28] 尹延春,赵同彬,谭云亮,等.锚固体应力分布演化规律及其影响因素研究[J].采矿与安全工程学报. 2013(5): 712-716.

    YIN Yanchun, ZHAO Tongbin, TAN Yunliang. Research of stress distribution evolution law and influencing factors[J]. Journal of Mining and Safety Engineering, 2013(5): 712-716.

    [29] 赵一鸣.煤矿巷道树脂锚固体力学行为及锚杆杆体承载特性研究[J].煤炭学报,2012,37(8):1423-1424.

    ZHAO Yiming. Study on mechanical bebavior of epoxy bonded bolt system and bolt bearing characteristic in coal mine roadway[J]. Journal of China Coal Society, 2012, 37(8): 1423-1424.

    [30] 杨绿刚.防水树脂锚固剂的试验研究[J].煤矿安全,2008(3):11-13.
    [31] 胡滨,康红普,林健,等.温度对树脂锚杆锚固性能影响研究[J].采矿与安全工程学报,2012,29(5):644.

    HU Bin, KANG Hongpu, LIN Jian, et al. Study on influence of temperature on anchorage performance of resin anchored bolt[J]. Journal of Mining and Safety Engineering, 2012, 29(5): 644.

    [32] O Hol■. Evaluation of many load tests of passive rock bolts in the czech republic[J]. Geoscience Engineering, 2017, 63(1): 1-7.
    [33] Ding S, Jing H, Chen K, et al. Stress evolution and support mechanism of a bolt anchored in a rock mass with a weak interlayer[J]. International Journal of Mining Science and Technology, 2017, 27(3): 573-580.
    [34] Hariyadi, Munemoto S, Sonoda Y. Experimental analysis of anchor bolt in concrete under the pull-out loading[J]. Procedia Engineering, 2017, 171: 926-933.
    [35] 康红普,吴拥政,李建波.锚杆支护组合构件的力学性能与支护效果分析[J].煤炭学报,2010,35(7):1057-1065.

    KANG Hongpu, WU Yongzhen, LI Jianbo. Analysis on mechanical performances and supporting function of combination components for rock boltination components for rock bolting[J]. Journal of China Coal Society, 2010, 35(7): 1057-1065.

    [36] 原贵阳,孙志勇,李建忠.锚杆支护钢筋网传力机制及分区承载试验研究[J].煤矿安全,2019,50(12):54-59.

    YUAN Guiyang, SUN Zhiyong, LI Jianzhong. Experimental study on force transfer mechanism and zonal bearing capacity of reinforcement mesh with bolt support[J]. Safety in Coal Mines, 2019, 50(12): 54-59.

    [37] 原贵阳,孙志勇,李建忠.锚杆支护组合构件对钢筋网加固作用试验研究[J].煤炭学报,2020,45(2):556-567.

    YUAN Guiyang, SUN Zhiyong, LI Jianzhong. Experimental study on reinforcement effect of bolt support composite members on reinforced mesh[J]. Journal of China Coal Society, 2020, 45(2): 556-567.

    [38] 张辉,程利兴.松软煤层锚固孔底扩孔锚固机理及锚固性能研究[J].煤炭科学技术,2016,44(3):18.

    ZHANG Hui, CHENG Lixing. Study on anchoring mechanism and anchoring performances of bottom reaming for anchoring borehole in soft seam[J]. Coal Science and Technology, 2016, 44(3): 18.

    [39] 刘少伟,李文彬,张辉.煤矿巷道正楔形锚固孔锚固性能与参数优化研究[J].煤炭科学技术,2018,46(1):53-60.

    LIU Shaowei, LI Wenbin, ZHANG Hui. Study on anchorage performance and parameters optimization of positive wedge anchorage hole in roadway[J]. Coal Science and Technology, 2018, 46(1): 53-60.

    [40] 付孟雄,刘少伟,范凯,等.煤巷顶板锚固孔钻进钻杆振动特性数值模拟研究[J].采矿与安全工程学报,2019,36(3):473-481.

    FU Mengxiong, LIU Shaowei, FAN Kai, et al. Numerical simulation research on vibration characteristics of drill rod when drilling roof bolt hole[J]. Journal of Mining and Safety Engineering, 2019, 36(3): 473-481.

    [41] 王帅.扩底补填对防止较软煤巷树脂锚杆滑移失效的机理及试验[D].焦作:河南理工大学,2020.
  • 期刊类型引用(3)

    1. 李勇,张玉芳,廖小平,牛文庆,彭浩然,聂希亦. 软弱地层挤扩锚杆力学特性研究. 公路交通科技. 2025(01): 122-130+139 . 百度学术
    2. 南华,赵贝贝,王帅,罗明. 锚固体后置膨胀性对围岩径向增压的影响. 煤矿安全. 2023(05): 232-239 . 本站查看
    3. 程利兴. 基于扩孔锚固的参数优化分析及力学性能试验研究. 煤矿安全. 2023(07): 196-204 . 本站查看

    其他类型引用(7)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 10
出版历程
  • 发布日期:  2021-02-19

目录

    /

    返回文章
    返回