• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

细菌厌氧降解对烟煤孔隙及分形特征的影响

张攀攀, 郭红光, 段凯鑫, 陈 超

张攀攀, 郭红光, 段凯鑫, 陈 超. 细菌厌氧降解对烟煤孔隙及分形特征的影响[J]. 煤矿安全, 2020, 51(10): 213-217.
引用本文: 张攀攀, 郭红光, 段凯鑫, 陈 超. 细菌厌氧降解对烟煤孔隙及分形特征的影响[J]. 煤矿安全, 2020, 51(10): 213-217.
ZHANG Panpan, GUO Hongguang, DUAN Kaixin, CHEN Chao. Effect of Bacterial Anaerobic Degradation on Pore Structure and Fractal Characteristics of Bituminous Coal[J]. Safety in Coal Mines, 2020, 51(10): 213-217.
Citation: ZHANG Panpan, GUO Hongguang, DUAN Kaixin, CHEN Chao. Effect of Bacterial Anaerobic Degradation on Pore Structure and Fractal Characteristics of Bituminous Coal[J]. Safety in Coal Mines, 2020, 51(10): 213-217.

细菌厌氧降解对烟煤孔隙及分形特征的影响

Effect of Bacterial Anaerobic Degradation on Pore Structure and Fractal Characteristics of Bituminous Coal

  • 摘要: 为研究细菌厌氧降解对烟煤孔隙及分形特征的影响,通过高压压汞和低温液氮吸附对烟煤孔隙发育变化进行表征,分别利用Menger模型和FHH模型进行分形特征分析。结果表明:细菌厌氧降解后,一方面降解残煤微孔、过渡孔以及中孔孔容降低,比表面积降低更为显著,但同时也发现大孔孔容增加;另一方面降解残煤分形维数明显降低,表面粗糙程度降低,孔隙发育趋于简单;说明细菌厌氧降解后烟煤对煤层气吸附能力降低,而渗流能力部分增加。
    Abstract: In order to study the effect of bacterial anaerobic degradation on coal pores and fractal characteristics, the development of coal pores was characterized by high-pressure mercury injection and low-temperature liquid nitrogen adsorption. Menger model and FHH model were used to analyze the fractal characteristics. The results showed that after anaerobic degradation of bacteria, the micro-pores, transitional pores and meso-pores of residual coal were reduced, and the specific surface area was reduced more significantly. But at the same time, the large pore volume was increased. Besides, the dimension was obviously reduced, the surface roughness was reduced, and the pore development tended to be simple. These results showed that after anaerobic degradation, the coalbed methane adsorption capacity of bituminous coal reduced, while the seepage capacity partly increased.
  • [1] Scott A R.Improving coal gas recovery with microbially enhanced coalbed methane[M]. Berlin: Springer Netherlands, 1999: 89-110.
    [2] Welte C U. A microbial route from coal to gas[J].Science, 2016, 354(6309): 184-184.
    [3] Park S Y, Liang Y.Biogenic methane production from coal: a review on recent research and development on microbially enhanced coalbed methane (MECBM) [J].Fue, 2016, 166: 258-267.
    [4] Chen F, He H, Zhao S M, et al.Analysis of Microbial Community Succession during Methane Production from Baiyinhua Lignite[J]. Energy & fuels, 2018, 32(10): 10311-10320.
    [5] Wang Bobo, Yu Zhisheng,Zhang Yiming, et al.Microbial communities from the Huaibei Coalfield alter the physicochemical properties of coal in methanogenic bioconversion[J]. International Journal of Coal Geology, 2019, 202: 85-94.
    [6] 夏大平,苏现波,吴昱,等.不同预处理方式和模拟产气实验对煤结构的影响[J].煤炭学报,2013,38(1):129-133.
    [7] Zhang Rui, Liu Shimin, Bahadur Jitendra, et al.Changes in pore structure of coal caused by coal-to-gas bioconversion[J]. Scientific Reports, 2017, 7(1): 3840.
    [8] 夏大平,郭红玉,马俊强,等.生物甲烷代谢对煤孔隙结构的影响[J].天然气地球科学,2014,25(7):1097.
    [9] Guo Hongguang, Cheng Yatong, Huang Zaixing, et al.Factors affecting co-degradation of coal and straw to enhance biogenic coalbed methane[J]. Fuel, 2019, 244: 240-246.
    [10] Hodot B B.Outburst of coal and coalbed gas[M]. Beijing: China Coal Industry Press, 1966.
    [11] 李明,姜波,兰凤娟,等.黔西-滇东地区不同变形程度煤的孔隙结构及其构造控制效应[J].高校地质学报,2012,18(3):533-538.
    [12] Thommes Matthias, Kaneko Katsumi, Neimark Alexander V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [J]. Pure and Applied Chemistry, 2015, 87(9-10): 1051-1069.
    [13] 宋昱,姜波,李凤丽,等.低-中煤级构造煤纳米孔分形模型适用性及分形特征[J].地球科学,2018,43(5):1611-1622.
    [14] 李子文,郝志勇,庞源,等.煤的分形维数及其对瓦斯吸附的影响[J].煤炭学报,2015,40(4):863-869.
  • 期刊类型引用(1)

    1. 姚依林. 门克庆矿31201工作面复合水体下安全开采技术研究. 煤炭与化工. 2023(04): 40-44+51 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  23
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 1
出版历程
  • 发布日期:  2020-10-19

目录

    /

    返回文章
    返回