突出煤层综采工作面小煤柱掘进技术
Small Pillar Driving Technique in Fully Mechanized Working Face of Outburst Coal Seam
-
摘要: 针对寺家庄矿15#煤层综采工作面小煤柱掘进过程中由于煤与瓦斯突出风险大和巷道稳定性差等因素带来的安全问题,采用理论计算、数值模拟及现场试验等方法对综采工作面沿空掘巷煤柱尺寸及现场实践效果进行研究。结果表明:工作面上覆岩层侧向结构中存在着影响应力分布的关键块体,通过分析、计算得到煤柱尺寸存在临界值,当煤柱尺寸超过该值时,煤柱应力显著升高,不利于回采巷道稳定性;通过对煤柱应力分布数值模拟和现场测试,结合开采安全性分析,确定寺家庄矿15106综采工作面煤柱尺寸为7 m;按照已确定的煤柱尺寸进行小煤柱沿空掘巷后,顶底板最大移近量约324 mm,两帮最大移近量约224 mm,较未采用沿空掘巷方法时分别降低了42%、29%,掘进回风瓦斯浓度最大0.35%,平均0.15%,防突钻孔的工程量减少约2/3,15106工作面进回风巷月平均进尺提高至原始煤体中月平均进尺的2.35倍。Abstract: Aiming at the safety problems caused by poor roadway stability and other factors during gob-side entry driving of 15106 isolated island face in Sijiazhuang Mine, theoretical calculations, numerical simulations and field tests were adopted to determine the coal pillar size and field practice effect of gob-side entry driving in isolated face. The results show that there are key blocks in the lateral structure of the overlying strata on the isolated face that affect stress distribution. Through analysis and calculation, there is a critical value for the coal pillar size for gob-side entry driving. When the size of coal pillar exceeds this value, the stress of coal pillar increases significantly, this is not conducive to the stability of stoping roadway. Through numerical simulation and field test of coal pillar lateral stress distribution, combined with mining safety analysis, the coal pillar size of 15106 isolated island face in Sijiazhuang Mine was determined to be 7 m. After the gob-side entry driving with small coal according to the determined coal pillar size, the maximum approach amount of the top and bottom plates is about 324 mm, and the maximum approach amount of the two groups is about 224 mm, which are 42% and 29% lower than those when gob-side entry driving method is not used. The maximum concentration of return gas is 0.35% and the average is 0.15%, the amount of anti-outburst drilling works decreased by about 2/3, and the average monthly footage of the 15106 face into the return air lane increased to 2.35 times of the average monthly footage of the original coal body.
-
-
[1] 王权,屠世浩,袁永,等.孤岛综放工作面合理护巷煤柱尺寸确定[J].煤矿安全,2014,45(1):36-39. [2] 敖卫华,黄文辉,姚艳斌,等.华北东部地区深部煤炭资源特征及开发潜力[J].资源与产业,2012,14(3):84-90. [3] 孙升林,王玉林.我国东部煤炭资源状况及勘查前景浅析[J].煤炭经济研究,2008(7):4-6. [4] 侯朝炯,李学华.综放沿空掘巷围岩大、小结构的稳定性原理[J].煤炭学报,2001,26(2):1-7. [5] 马振乾,姜耀东,宋红华.构造破碎区沿空掘巷偏应力分布特征与控制技术[J].采矿与安全工程学报,2017,34(1):24-31. [6] 王朋飞,冯国瑞,赵景礼,等.长壁工作面巷顶沿空掘巷围岩应力分析[J].岩土力学,2018,39(9):3395. [7] 张科学,张永杰,马振乾,等.大煤柱内沿空掘巷窄煤柱合理宽度的确定[J].采矿与安全工程学报,2014, 31(2):255-262. [8] 李磊,柏建彪,王襄禹.综放沿空掘巷合理位置及控制技术[J].煤炭学报,2012,37(9):1564-1569. [9] 张炜,张东升,陈建本,等.极近距离煤层回采巷道合理位置确定[J].中国矿业大学学报,2012,41(2):182-188. [10] 马其华,王宜泰.深井沿空巷道小煤柱护巷机理及支护技术[J].采矿与安全工程学报,2009,26(4):520. [11] 杨小林,李世和,陈建伟.高瓦斯矿井孤岛工作面沿空掘巷煤柱宽度研究[J].煤矿安全,2019,50(10):193-197. [12] 华心祝,刘淑,刘增辉,等.孤岛工作面沿空掘巷矿压特征研究及工程应用[J].岩石力学与工程学报,2011,30(8):1646-1651. [13] 钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010. [14] 宋振骐,宋扬,刘义学,等.内外应力场理论及其在矿压控制中的应用[C]//水电与矿业工程中的岩石力学问题——中国北方岩石力学与工程应用学术会议文集.北京:中国岩石力学与工程学会,1991:415. [15] 何团,魏亚星,张学亮,等.特厚煤层综放开采载荷传递及内、外应力场形成机制[J].煤矿开采,2019,24(1):98-103. -
期刊类型引用(4)
1. 胡乐天. 小煤柱沿空掘进瓦斯综合防治技术研究. 煤炭技术. 2025(01): 198-201 . 百度学术
2. 周利峰. 小煤柱工作面应力区顺槽围岩控制技术的应用. 机械管理开发. 2022(02): 173-175 . 百度学术
3. 谢亮. 高突综采工作面地质灾害超前综合探测技术. 能源与环保. 2022(08): 68-72 . 百度学术
4. 张健. 东周窑煤矿8106工作面沿空掘巷围岩控制技术研究与应用. 煤. 2021(05): 35-37 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 34
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 4