基于通风量与推进度的采空区自然发火数值模拟
Numerical Simulation of Spontaneous Combustion in Goaf Based on Ventilation and Advancing Degree
-
摘要: 为了优化注氮防灭火技术的治理效果,以大同煤矿集团马道头煤业有限责任公司8401工作面为研究对象,采用数值模拟的方法,研究在没有注氮条件下和有注氮条件2种情况下工作面的通风量与推进度对采空区自燃氧化带范围的影响。研究表明:无论是注氮还是不注氮,工作面风量越大,氧化升温带越宽,采空区自然危险性越大;从预防工作面采空区自然发火角度考虑,尽量减小工作面的风量,即采用合理风量通风技术;8401综放工作面供风量的合理的范围为1 400~1 755 m3/min;同时得出8401综放工作面必须采取注氮措施,且保证工作面月推进度不小于36 m,该条件下注氮防灭火技术的应用效果最佳。Abstract: To optimize the control effect of nitrogen injection fire-fighting technology, the No.8401 working face in Madaotou Coal Industry Company of Datong Coal Mine Group is taken as the research object. The numerical simulation method is used to study the influence of ventilation and advancing degree of working face on the scope of spontaneous combustion oxidation zone in goaf under nitrogen injection and non-nitrogen injection. The results show that whether nitrogen injection or not, the larger the air volume in the working face is, the wider the oxidation temperature rise zone is, and the greater the spontaneous combustion risk of goaf is. From the view point of preventing the goaf from spontaneous combustion, the air volume of the working face should be reduced as much as possible, i.e. the reasonable ventilation technology should be adopted. The reasonable range of air supply in No.8401 fully mechanized caving face is 1 400~1 755 m3/min. At the same time, it is concluded that the nitrogen injection measures must be taken in No.8401 fully mechanized caving face, and the monthly advancing degree of the working face should be no less than 36 m. Under the above conditions, the application effect of nitrogen injection fire-fighting technology is the best.
-
-
[1] 李宗翔,纪奕君.开区注氮采空区自燃温度场的数值模拟研究[J].力学与实践,2005,27(4):47-50. [2] 林骏奇.近距离煤层综采工作面开放式注氮防火抑爆技术[J].煤炭科学技术,1993,21(10):4-8. [3] 李庆源,张峰,孔维一.自燃采空区注氮过程标志性气体分布特征研究[J].河南理工大学学报(自然科学版),2012,31(4):382-386. [4] 孙珍平.基于示踪气体技术的特厚煤层综放工作面漏风通道试验研究[J].煤矿安全,2019,50(11):14-17. [5] 吴兵,郭海,赵灿,等.正压通风矿井自燃防治技术研究及救灾实践[J].矿业安全与环保,2012,39(5):69. [6] 纪忠.应用模型模拟正交试验法优化采空区注氮参数[J].煤矿安全,1993,24(2):16-19. [7] 罗新荣,蒋曙光,李增华.综采放顶煤采空区注氮防灭火模拟试验研究[J].中国矿业大学学报,1997,26(2):42-45. [8] 王月红,吴怡,张九零,等.采空区注氮防灭火技术工艺参数研究[J].矿业研究与开发,2019,39(2):96. [9] 曹镜清,邬剑明,周春山,等.低位放顶煤采空区自燃区域划分与注氮口位置确定[J].煤炭科学技术,2017, 45(2):89-94. [10] 李宗翔,李杰,李林,等.“两进一回”复杂采场采空区注氮防灭火模拟[J].辽宁工程技术大学学报(自然科学版),2017,36(8):785-789. [11] 贾宝山,汪伟,祁云,等.晋牛矿1303综放面采空区注氮方案研究及数值模拟[J].中国安全生产科学技术,2018,14(3):82-88. [12] 孙珍平.基于邻空巷钻孔技术的特厚煤层均压工作面采空区自燃“三带”研究[J].煤矿安全,2019,50(12):140-143. [13] 马东,秦波涛.综放工作面采空区注氮量与氧化自燃带分布关系[J].煤炭科学技术,2016,44(4):78-82. [14] 刘星魁,王公忠,周爱桃.采空区注氮参数设计及三维流场分析[J].太原理工大学学报,2015,46(3):312-317.
计量
- 文章访问数: 23
- HTML全文浏览量: 0
- PDF下载量: 0