基于黏土含量的弱胶结地层巷道稳定性分析
Stability Analysis of Roadway in Weakly Consolidated Formation Based on Clay Mineral Content
-
摘要: 以内蒙古五间房西一矿为工程背景,对3组取自该矿不同黏土矿物含量的弱胶结软岩分别开展XRD矿物衍射分析、液塑限联合测定和室内力学试验,根据物理与力学试验结果,建立3种不同黏土矿物含量岩体的巷道数值分析模型,研究岩石黏土矿物含量对巷道围岩变形和塑性区的影响。结果表明:随黏土矿物含量的增加,弱胶结岩石的颜色逐渐加深,液限和塑限逐渐变大,力学强度先增后降,细观“鳞片状”结构越发育;弱胶结地层巷道的塑性区范围和变形量不仅随黏土矿物含量的增加而增大,且增幅随黏土矿物含量的增加逐渐增大,当黏土矿物含量超过33%后的围岩稳定性明显降低。Abstract: Taking Wujianfang west No.1 mine in Inner Mongolia as the engineering background, XRD mineral diffraction analysis, combined determination of liquid-plastic limit and laboratory mechanical test were carried out on three groups of weakly consolidated soft rocks with different clay mineral content from the mine. According to the physical and mechanical test results, three different numerical analysis models of clay mineral content of rock roadway were set up, and the influence of rock clay mineral content on surrounding rock deformation and plastic zone of roadway was studied. The results show that with the increase of clay mineral content, the color of weakly consolidated rocks gradually deepens, the liquid limit and plastic limit gradually increase, the mechanical strength increases before it decreases, and the meso-scale structure develops more and more. The range of plastic zone and deformation of weakly consolidated formation roadway do not increase linearly with the increase of clay mineral content, and the increment of plastic zone and deformation gradually increases. When the content of clay mineral exceeds 33%, the stability of surrounding rock decreases obviously.
-
-
[1] 马煜,余斌.黏土矿物对泥石流体屈服应力影响的实验研究[J].人民长江,2016,47(10):81-85. [2] 李明,姜波,秦勇,等.构造煤中矿物质对孔隙结构的影响研究[J].煤炭学报,2017,42(3):726-731. [3] 张志春.黏土矿物对煤泥水过滤效果的影响[J].煤炭技术,2018,37(9):360-362. [4] 路言秋.黏土矿物高温热变及对储层孔隙结构的影响[J].科学技术与工程,2015(24):66-71. [5] 程宏飞,周熠,吴珍珠,等.插层剥片改性高岭土填充丁苯橡胶复合材料的力学性能[J].中国非金属矿工业导刊,2015(6):23-26. [6] 孙庆峰,陈发虎,张家武.气候环境变化研究中影响黏土矿物形成及其丰度因素的讨论[J].岩石矿物学杂志,2011,30(2):291-300. [7] 蒋国伟,吕国玉.偏高岭土对混凝土力学性能及耐久性的研究[J].浙江建筑,2019,36(1):56-59. [8] 张军军.伊利石软岩巷道围岩应变特征有限元分析[J].能源与节能,2014(7):190-192. [9] 朱阁,张志成,李平虎,等.高应力-节理化复合软岩巷道地质特征及支护技术[J].煤炭科学技术,2015,43(9):18-23. [10] 周霖.膨胀型软岩巷道底鼓机理及控制技术[J].煤炭技术,2015,34(9):92-94. [11] Qingheng Gu, Wenkai Ru, Yunliang Tan, et al. Mechanical Analysis of Weakly Cemented Roof of Gob-side Entry Retaining in Fully-Mechanized Top Coal Caving Mining[J]. Geotechnical and Geological Engineering, 2019, 37(4): 2977-2984. [12] 孙利辉,纪洪广,杨本生.西部典型矿区弱胶结地层岩石的物理力学性能特征[J].煤炭学报,2019,44(3):866-874. [13] 孙利辉.西部弱胶结地层大采高工作面覆岩结构演化与矿压活动规律研究[J].岩石力学与工程学报,2017,36(7):1820. [14] 李化敏,王开林,李回贵,等.神东矿区弱胶结砂岩的力学及声发射特征研究[J].采矿与安全工程学报,2018,35(4):843-851. [15] 陈波,孙德安,高游,等.弱胶结结构性软黏土力学特性的试验研究[J].岩土工程学报,2017,39(12):2296-2303. [16] 李清,侯健,王梦远,等.弱胶结砂质泥岩渐进性破坏力学特性试验研究[J].煤炭学报,2016,41(S2):385-392. [17] 孙振伟,陈维龙.弱胶结软岩巷道底鼓变形机理及控制技术研究[J].煤炭技术,2019,38(3):31-34. [18] 张伟,杨富强,蔡来生,等.红庆梁煤矿弱胶结地层煤巷锚网支护研究[J].煤矿安全,2018,49(10):45-49. [19] 赵增辉,马庆,高晓杰,等.弱胶结软岩巷道围岩非协同变形及灾变机制[J].采矿与安全工程学报,2019, 36(2):272-279. [20] 孟庆彬,韩立军,乔卫国,等.极弱胶结地层煤巷锚网索耦合支护效应研究及应用[J].采矿与安全工程学报,2016,33(5):770-778. [21] 贺广良,王渭明,张为社,等.弱胶结软岩巷道断面形式及支护优化研究[J].煤炭工程,2017,49(1):38-41.
计量
- 文章访问数: 17
- HTML全文浏览量: 0
- PDF下载量: 0