• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

首采煤层开采诱发底板应力场分布特征研究

韩飞林, 郑春山, 薛 生, 王志根, 王 永

韩飞林, 郑春山, 薛 生, 王志根, 王 永. 首采煤层开采诱发底板应力场分布特征研究[J]. 煤矿安全, 2020, 51(12): 263-269.
引用本文: 韩飞林, 郑春山, 薛 生, 王志根, 王 永. 首采煤层开采诱发底板应力场分布特征研究[J]. 煤矿安全, 2020, 51(12): 263-269.
HAN Feilin, ZHENG Chunshan, XUE Sheng, WANG Zhigen, WANG Yong. Study on Distribution Characteristics of Floor Stress Field Induced by the First Mined Coal Seam[J]. Safety in Coal Mines, 2020, 51(12): 263-269.
Citation: HAN Feilin, ZHENG Chunshan, XUE Sheng, WANG Zhigen, WANG Yong. Study on Distribution Characteristics of Floor Stress Field Induced by the First Mined Coal Seam[J]. Safety in Coal Mines, 2020, 51(12): 263-269.

首采煤层开采诱发底板应力场分布特征研究

Study on Distribution Characteristics of Floor Stress Field Induced by the First Mined Coal Seam

  • 摘要: 为了掌握平煤八矿首采煤层开采扰动下底板力学特性演化规律,采用COMSOL Multiphysics软件模拟了Ji15煤层开采扰动下下伏煤岩层的应力分布特征。结果表明:在首采层开采扰动下,下伏煤岩层的垂直应力场整体关于工作面中部对称分布,首采层工作面的上下方可以看到明显的应力卸压区,而在卸压层两端有应力集中现象,且最大应力集中程度可达到2.56;距离首采层底板30 m范围内的卸压效果较好,应力释放率均能达到95%以上,且充分卸压区的长度能够达到首采层工作面长度的70.22%以上,故应优先选择卸压层30 m范围内的煤层作为首采层。
    Abstract: In order to grasp the evolution law of the mechanical characteristics of the floor under the disturbance of the first coal seam mining in Pingmei No.8 coal mine, this paper uses COMSOL Multiphysics software to simulate the stress distribution characteristics of the underlying coal rock layer under the disturbance of Ji15 coal seam mining. Results show that: under the disturbance of first mining layer, the vertical stress field of underlying coal stratum is symmetrically distributed in the middle of working face. Obvious stress-relief zone could be seen above and below the working face of first mining layer. There is stress concentration at both ends of the mining area, and the maximum stress concentration reaches 2.56. The stress-relief effect is within 30 m from the bottom of first mining layer. Meanwhile, the stress releasing rate could reach more than 95%, and the length of sufficient stress-relief zone could reach 70.22% of the length of working face in first mining layer. Therefore, the coal seam within 30 m of stress-relief layer should be preferentially selected as the first mining layer.
  • [1] 胡千庭.预防煤矿瓦斯灾害新技术的研究[J].矿业安全与环保,2006(5):1-7.
    [2] 李学来,刘见中.瓦斯灾害治理新技术[J].中国安全科学学报,2004(7):104-107.
    [3] 袁亮.卸压开采抽采瓦斯理论及煤与瓦斯共采技术体系[J].煤炭学报,2009,34(1):1-8.
    [4] 黄旭超,王克全,孙东玲.被保护煤层底板穿层抽采钻孔合理布置方式研究[J].世界科技研究与发展,2011,33(4):608-610.
    [5] 黄旭超.采场下伏不同距离被保护层应力场演化特征研究[J].世界科技研究与发展,2012,34(2):217.
    [6] 徐东方,覃佐亚,旷裕光,等.近距离煤层群上保护层开采防突优化设计[J].煤炭技术,2018,37(11):183.
    [7] 李思乾.深井远距离上保护层开采卸压效果研究[J].煤矿安全,2018,49(10):179-182.
    [8] 杨贺,邱黎明,汪皓,等.远距离下保护层开采上覆煤岩层采动应力场数值模拟研究[J].工矿自动化,2017, 43(6):37-41.
    [9] 张洋洋,梁运培,邹全乐,等.保护层开采应力场和位移场演化规律模拟[J].煤炭技术,2017,36(11):59.
    [10] 李圣伟,高明忠,谢晶,等.保护层开采卸压增透效应及其定量表征方法研究[J].四川大学学报(工程科学版),2016,48(S1):1-7.
    [11] 王路军,周宏伟,荣腾龙,等.深部煤体采动应力场演化规律及扰动特征研究[J].岩石力学与工程学报,2019,38(S1):2944-2954.
    [12] 殷伟,高焱,陈家瑞,等.上保护层开采下伏煤岩体应力卸压规律力学分析[J].煤矿安全,2019,50(9):197-202.
    [13] 潘红宇,索亮,李树刚,等.不同采高上保护层开采卸压效应的UDEC数值模拟研究[J].湖南科技大学学报(自然科学版),2013,28(3):6-11.
    [14] YIN Wei, MIAO Xiexing, ZHANG Jixiong, et al.Mechanical analysis of effective pressure relief protection range of upper protective seam mining[J]. International Journal of Mining Science and Technology, 2017, 27(3): 537-543.
    [15] WU Xiangqian, DOU Linming, LV Changguo, et al. Research on Pressure-Relief Effort of Mining Upper-Protective Seam on Protected Seam[C]//International Symposium on Mine Safety Science & Engineering.Beijing: China Academy of Safety Science and Technology, 2011: 26.
    [16] LIU Haibo, CHENG Yuanping, SONG Jiancheng, et al.Pressure relief, gas drainage and deformation effects on an overlying coal seam induced by drilling an extra-thin protective coal seam[J]. Mining Science and Technology, 2009, 19(6): 724-729.
    [17] LI Shengwei, GAO Mingzhong, YANG Xiaojun, et al.Numerical simulation of spatial distributions of mining-induced stress and fracture fields for three coal mining layouts[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(5): 907-913.
    [18] YANG Wei, LIN Baiquan, QU Yongan, et al. Stress evolution with time and space during mining of a coal seam[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(7): 1145-1152.
    [19] Rui Gao, Bin Yu, Xiangbin Meng. Stress distribution and surrounding rock control of mining near to the overlying coal pillar in the working face[J]. International Journal of Mining Science and Technology, 2019, 29(6): 881-887.
    [20] 杨天鸿.岩石破裂过程渗透性质及其与应力耦合作用研究[J].岩石力学与工程学报,2002(3):457.
    [21] 石必明,俞启香,周世宁.保护层开采远距离煤岩破裂变形数值模拟[J].中国矿业大学学报,2004(3):25-29.
    [22] 刘红元,刘建新,唐春安.采动影响下覆岩垮落过程的数值模拟[J].岩土工程学报,2001(2):201-204.
    [23] 王露,许家林,吴仁伦.采动煤层瓦斯充分卸压应力判别指标理论研究[J].煤炭科学技术,2012,40(3):1-5.
计量
  • 文章访问数:  22
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 发布日期:  2020-12-19

目录

    /

    返回文章
    返回