复杂地貌下行式开采地表移动变形规律
Surface Movement and Deformation Law in Downward Mining of Complex Geomorphology
-
摘要: 为了研究复杂地貌条件下下行式开采地表移动变形规律,结合山西某煤矿工程地质条件,采用理论分析和FLAC3D数值模拟相结合的方法,通过构建含复杂地貌的三维模型,分析了研究区地表在8#煤和11#煤下行式重复采动作用下地表的移动变形特征以及地表坡体失稳破坏机理。结果表明:由于8#煤层覆岩厚度较小,8#煤层开采后,采空区上方部分区域断裂带直达地表;8#煤层底板破坏带深度达16.08 m,对11#煤顶板稳定性产生一定的影响,但11#煤开采时仍能形成稳定顶板;8#煤和11#采动下地表最大下沉值分别为1.331、1.626 m,地表沉陷范围呈现以采空区为中心的近椭圆形,重复采动下地表移动变形范围变化较小;地表移动变形受到地形的影响,在陡坡地带地表沉陷范围和水平位移均明显增大;地表坡体坡脚处发生剪应力集中,坡体后缘受到拉应力作用,在降雨和震动作用下,坡体易发生破坏形成地质灾害。Abstract: To study the law of surface movement and deformation in downward mining under complex landform conditions, combined with the engineering geological conditions of a coal mine in Shanxi Province, a combination method of theoretical analysis and FLAC3D numerical simulation is used to construct a three-dimensional model with complex landforms. The characteristics of the movement and deformation of the ground surface and the instability and failure mechanism of the surface slope under the 8# coal and 11# coal repeated downward mining operation. The results show that due to the small overburden thickness of the 8# coal seam, after the mining of the 8# coal seam, the fracture zone in some areas above the goaf reaches the surface directly; the depth of the failure zone of the 8# coal seam floor is up to 16.08 m, which has a certain effect on the stability of the 11# coal roof , but the 11# coal mining can still form a stable roof; the maximum surface subsidence values under the 8# coal and the 11# mining are 1.331 m and 1.626 m, respectively, and the surface subsidence area presents a near ellipse with the goaf as the center, the deformation range of ground movement under repeated mining changes little; the surface movement deformation is affected by the topography, and the surface subsidence range and horizontal displacement in the steep slope area significantly increase; the shear stress concentration occurs at the foot of the surface slope, and the rear edge of the slope body is subjected to tensile stress. Under the action of rainfall and vibration, the slope is prone to damage and forms the geological disaster.
-
-
[1] 蒯洋,刘辉,朱晓峻,等.厚松散层下多煤层重复开采地表移动规律[J].煤田地质与勘探,2018,46(2):130-136. [2] 郭文兵,黄成飞,陈俊杰.厚湿陷黄土层下综放开采动态地表移动特征[J].煤炭学报,2010,35(S1):38-43. [3] 崔希民,邓喀中.煤矿开采沉陷预计理论与方法研究评述[J].煤炭科学技术,2017,45(1):160-169. [4] 李仁民,刘松玉,方磊.高速公路下伏多层采空区地表沉陷的预计评价方法[J].东南大学学报(自然科学版),2002,32(4):648-652. [5] 胡千庭,田成林,谭云亮,等.重复采动条件下坚硬顶板力学试验研究[J].中国矿业大学学报,2018,47(1):67-72. [6] 刘红元,唐春安,芮勇勤.多煤层开采时岩层垮落过程的数值模拟[J].岩石力学与工程学报,2001(2):190. [7] 周泽文,吕义清.煤矿开采条件下滑坡的变形机理[J].煤矿安全,2016,47(11):45-48. [8] 国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M].北京:煤炭工业出版社,2008. [9] 汪吉林,吴圣林,丁陈建,等.复杂地貌多煤层采空区的稳定性评价[J].煤炭学报,2009,34(4):466-471. [10] 赵杰,刘长友,李建伟,等.沟谷区域浅埋煤层开采三维地质建模及地表损害研究[J].采矿与安全工程学报,2018,35(5):969-977. [11] 许家林,朱卫兵,王晓振,等.沟谷地形对浅埋煤层开采矿压显现的影响机理[J].煤炭学报,2012,37(2):179-185. [12] 张栋,汪华君,范育青.山体浅埋煤层采动坡体的稳定性分析[J].煤矿安全,2014,45(4):195-197. [13] 谢生荣,潘浩,陈冬冬,等.多煤层开采层间等效基本顶结构及其活动规律[J].中国矿业大学学报,2017, 46(6):1218-1225. -
期刊类型引用(4)
1. 李勇,陈祖国,徐建军,周加佳,苏善博,张震. 寺河井田3号煤层含气量三维建模. 科技和产业. 2023(22): 275-280 . 百度学术
2. 陈双双,张冬武,陈文志. 建筑用大理岩矿地质储量建模分析与资源管理. 山西建筑. 2022(09): 95-98 . 百度学术
3. 宣涛,王文升,刘灵童,李建荣,秦鹏. 不连续、薄互层煤层气地质建模技术——以澳大利亚苏拉特盆地为例. 中国煤炭地质. 2021(06): 31-36+68 . 百度学术
4. 冯绪兴,谭学斌,郝少伟,吴垚垒. 余吾矿煤层气井产能主控因素分析. 能源与环保. 2020(11): 77-81 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 15
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 6