基于瓦斯涌出时序序列的煤与瓦斯突出离散模态预警方法
Discrete and Modal Early Warning of Coal and Gas Outburst Based on Time Series of Gas Emission
-
摘要: 为了实现工作面煤与瓦斯突出危险性的动态、实时预警,提出基于瓦斯涌出时序序列的离散模态预警方法。获取煤矿瓦斯监测系统监测数据,实时计算采掘工作面的瓦斯涌出量,生成瓦斯涌出离散时序序列并进行区间划分。根据矿井瓦斯地质条件、采区煤层赋存状况、瓦斯灾害发生机理、瓦斯涌出异常历史记录和相似工作面瓦斯突出的前兆信息记录,确定煤与瓦斯突出危险性预警指标的临界值。根据时序序列区间模态参数与预警指标临界值比对,实时发布煤与瓦斯突出危险性预警结果。Abstract: In order to realize the dynamic and real-time early warning of coal and gas outburst danger in working face, a discrete modal early warning method based on time series of gas emission is proposed. The methane monitoring data of the coal mine in the real time was used to calculate the gas emission, then the discrete time series of gas emission is generated and the interval is divided. The critical values of early warning indicators for coal and gas outburst were determined according to the gas geological conditions of the mine, the occurrence status of coal seams in the mining area, the mechanism of gas disasters, the historical records of gas emission anomalies, and the precursor information records of gas outbursts in similar working faces. According to the comparison between the modal parameters of the time series and the critical values of the early-warning indicators, the early-warning results of coal and gas outburst danger are released.
-
Keywords:
- coal and gas outburst /
- monitoring data /
- time series /
- modal parameter /
- disaster early warning
-
-
[1] 于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2005. [2] 宁小亮.煤与瓦斯突出预警技术研究现状及发展趋势[J].工矿自动化,2019,45(8):25-37. [3] 宁德义.我国煤矿瓦斯防治技术的研究进展及发展方向[J].煤矿安全,2016,47(2):161-165. [4] 董丁稳,屈世甲,王红刚.基于多测点关联分析的工作面瓦斯浓度实时预警[J].中国安全科学学报,2015, 25(1):111-115. [5] 朱世松,汪云甲,魏连江.基于时间序列相似性度量的瓦斯报警信号辨识[J].中国矿业大学学报,2012,41(3):474-480. [6] 魏连江,胡青伟,梁伟,等.基于K线图理论的瓦斯异常模式诊断研究[J].煤矿安全,2019,50(6):24-27. [7] 李胜,罗明坤,范超军,等.采煤工作面煤与瓦斯突出危险性智能判识技术[J].中国安全科学学报,2016, 26(10):76-81. [8] 温廷新,孙雪,孔祥博,等.基于PSOBP-AdaBoost模型的瓦斯涌出量分源预测研究[J].中国安全科学学报,2016,26(5):94-98. [9] 时天,马宪民.基于径向基神经网络的煤矿工作面瓦斯预测研究[J].仪器仪表学报,2008,29(4):618. [10] 郭德勇,胡杰,王彦凯.煤与瓦斯突出层次-可拓预警技术及应用[J].中国安全科学学报,2017,27(1):88-92. [11] 杜振宇,薛俊华,任波,等.基于层次-可拓的煤与瓦斯突出预警研究[J].煤矿安全,2018,49(12):169. [12] 王巍,刘德胜.基于支持向量机理论的煤矿瓦斯涌出量预测研究[J].煤矿机械,2011,32(2):78-80. [13] 崔邯龙,李海涛,孟文清.综掘工作面瓦斯涌出量的支持向量机预测模型[J].煤炭工程,2009(2):75. [14] 孟絮屹.灰色理论在煤与瓦斯突出预测中的应用研究[J].现代矿业,2015,31(5):119-120. [15] 孙斌.瓦斯涌出量灰色预测[J].中国煤炭,2007,33(8):72-74. [16] 吕品,马云歌,周心权.上隅角瓦斯浓度动态预测模型的研究及应用[J].煤炭学报,2006,31(4):461. [17] 李伟山,王琳,卫晨.LSTM在煤矿瓦斯预测预警系统中的应用与设计[J].西安科技大学学报,2018,38(6):1027-1035. [18] 卢新明,尹红.一种基于实时监测数据的动力灾害模态预警方法:CN108506041A[P].2018-09-07.
计量
- 文章访问数: 31
- HTML全文浏览量: 5
- PDF下载量: 2