• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

CO2与H2O对煤炭急速气化反应活性的影响分析

王倩倩, 李治刚, 郭红光, 王明远, 佐佐木久郎

王倩倩, 李治刚, 郭红光, 王明远, 佐佐木久郎. CO2与H2O对煤炭急速气化反应活性的影响分析[J]. 煤矿安全, 2020, 51(8): 1-6.
引用本文: 王倩倩, 李治刚, 郭红光, 王明远, 佐佐木久郎. CO2与H2O对煤炭急速气化反应活性的影响分析[J]. 煤矿安全, 2020, 51(8): 1-6.
WANG Qianqian, LI Zhigang, GUO Hongguang, WANG Mingyuan, Kyuro Sasaki. Analysis of the Influence of CO2 and H2O on Coal Rapid Gasification Reactivity[J]. Safety in Coal Mines, 2020, 51(8): 1-6.
Citation: WANG Qianqian, LI Zhigang, GUO Hongguang, WANG Mingyuan, Kyuro Sasaki. Analysis of the Influence of CO2 and H2O on Coal Rapid Gasification Reactivity[J]. Safety in Coal Mines, 2020, 51(8): 1-6.

CO2与H2O对煤炭急速气化反应活性的影响分析

Analysis of the Influence of CO2 and H2O on Coal Rapid Gasification Reactivity

  • 摘要: 为探讨煤气化反应过程中合成气CO和碳氢化合物(HCs)的产量,以及水对煤气化反应活性的影响,应用自制的CO2激光束以200 ℃/s的急速加热系统在CO2富集环境中(O2浓度≤10%),通过改变实验的升温速率、氧气浓度及煤样润湿度等条件,进行了煤的气化与燃烧特性实验。实验结果表明:在煤的气化与燃烧过程中,随着加热温度的升高,煤样的质量损失与合成气的产量不断增加,且煤样的质量损失与转化气体环境之间的关系为Air>富CO2>富N2;在富CO2气体环境中,随着加热温度的升高,O2浓度5%环境的CO气体和HCs气体的产量相对较大;此外发现CO气体生成量相对降低,而HCs生成量相对增加,这一结果表明煤在CO2富集气体环境的气化燃烧过程中,CO气体的生成主要依赖于O2浓度,而HCs的生成则主要依赖于H2O。
    Abstract: In order to discuss the production of syngas CO and hydrocarbons (HCs) and the effect of water on coal gasification reactivity, the gasification and combustion characteristics of coal were tested in a CO2 enrichment environment (O2 concentration≤10%) using a self-made CO2 laser beam with a 200 °C/s rapid heating system by changing the heating rate, oxygen concentration and moisture content of coal samples. The experimental results show that with the increase of heating temperature in the process of coal gasification and combustion, the mass loss of coal sample and the output of syngas increases continuously, and the relationship between the mass loss of coal sample and the transformed gas environment is air atmosphere>CO2-rich atmosphere> N2-rich atmosphere. On the other hand, in a CO2-rich gas environment, with the increase of heating temperature, the production of CO gas and HCs gas at 5%O2 concentration is relatively large. In addition, it is found that the amount of CO gas generated is relatively reduced, while the amount of HCs generated is relatively increased. This result shows that during the gasification and combustion of coal in CO2 enriched gas environment, the generation of CO gas mainly depends on O2 concentration, while the generation of HCs mainly depends on H2O.
  • [1] 张焰,伍浩松.全球能源相关碳排放2017年创历史新高[J]. 国外核新闻,2018(5):4-5.
    [2] International Energy Agency(IEA). CO2Emissionsfrom Fuel CombustionHighlights[EB/OL].[2018-11-08].https://webstore.iea.org/Content/Images/uploaded/CO2%20Highlights%202018.xls.
    [3] International Energy Agency(IEA). Global energy demand grew by 2.1% in 2017, and carbon emissions rose for the first time since 2014.[EB/OL].[2018-03-22].http://www.iea.org/newsroom/news/2018/march/global-energy-demand-grew-by-21-in-2017-and-carbon-emissions-rose-for-the-firs.html.
    [4] Shi B, Xu W, Wu E, et al. Novel design of integrated gasification combined cycle(IGCC) power plants with CO2 capture[J]. Journal of Cleaner Production, 2018, 195: 176-186.
    [5] Ahmed U, Kim C, Zahid U, et al. Integration of IGCC and methane reforming process for power generation with CO2 capture[J]. Chemical Engineering and Processing: Process Intensification, 2017, 111: 14-24.
    [6] Tanno K, Makino H. Development Tendency and Prospect of High Performance Coal Utilization Power Generation System for Low Carbon Society[J]. Kona Powder & Particle Journal, 2018, 35: 1-11.
    [7] International Energy Agency(IEA). Carbon Capture, Utilization and Storage Technology Development in China[EB/OL].[2011-09].https://www.iea.org/topics/carbon-capture-and-storage/.
    [8] Hossein Sahraei M, McCalden D, Hughes R, et al. A survey on current advanced IGCC power plant technologies, sensors and control systems[J]. Fuel, 2014, 137: 245-259.
    [9] Watanabe H, Ahn S, Tanno K. Numerical investigation of effects of CO2 recirculation in an oxy-fuel IGCC on gasification characteristics of a two-stage entrained flow coal gasifier[J]. Energy, 2017, 118: 181-189.
    [10] Cormos CC. Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS)[J]. Energy, 2012, 42(1): 434-445.
    [11] 步学朋.二氧化碳捕集技术及应用分析[J]. 洁净煤技术,2014(6):9-13.
    [12] Duan L Q, Sun S Y, Yue L, et al. Study on a new IGCC(Integrated Gasification Combined Cycle) system with CO2 capture by integrating MCFC (Molten Carbonate Fuel Cell)[J]. Energy, 2015, 87: 490-503.
    [13] Asif M, BakC, Wajid Saleem M, et al.Performance evaluation of integrated gasification combined cycle (IGCC) utilizing a blended solution of ammonia and 2-amino-2-methyl-1-propanol(AMP) for CO2 capture[J]. Fuel, 2015, 160: 513-524.
    [14] Stanger R, Wall T, Rahiala S, et al. Oxyfuel combustion for CO2 capture in power plants[J]. International Journal of Greenhouse Gas Control, 2015, 40: 55-125.
    [15] 雷鸣,黄星智,王春波. O2/CO2气氛下CO2和H2O气化反应对煤及煤焦燃烧特性的影响[J].燃料化学学报,2015, 43(12):1420-1426.
    [16] Li Q Z, Zhao C S, Chen X P, et al. Comparison of pulverized coal combustion in air and in O2/CO2 mixtures by thermo-gravimetric analysis[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1/2):521.
    [17] 马砺,王伟峰,邓军,等. CO2对煤升温氧化燃烧特性的影响[J].煤炭学报,2014,39(S2):397-404.
    [18] 王春波,岳爽,许旭斌,等.O2/CO2气氛下煤焦恒温燃烧NOx释放特性[J].煤炭学报,2018,43(1):257.
    [19] 范冬梅,朱治平,那永洁,等.一种褐煤煤焦水蒸气和CO2气化活性的对比研究[J].煤炭学报,2013(4):155-161.
    [20] Li Z G, Zhang X M, Sugai H, et al. Measurements of Gasification Characteristics of Coal and Char in CO2-Rich Gas Flow by TG-DTA[J]. Journal of Combustion, 2013(10): 1-15.
    [21] Lu P, Liao G X, Sun J H, et al. Experimental research on index gas of the coal spontaneous at low-temperature stage[J]. Journal of Loss Prevention in the Process Industries, 2004, 17(3): 243-247.
    [22] Wang Q M, Qi X Y, Zhong X M, et al. Test method for the propensity of coal to spontaneous combustion[J]. Procedia Earth and Planetary Science, 2009(1): 20-26.
    [23] Crnomarkovic N, Repic B, Mladenovic R, et al. Experimental investigation of role of steam in entrained flow coal gasification[J]. Fuel, 2007, 86(1): 194-202.
    [24] 李治刚,张晓明,菅井裕一,等.煤在高浓度CO2环境下的燃烧、气化及吸附实验[J].煤炭学报,2010,35(6):1021-1027.
    [25] 罗承先,周韦慧.煤的气化技术及其应用[J].中外能源,2009,14(1):28-35.
    [26] 汪寿建.现代煤气化技术发展趋势及应用综述[J]. 化工进展,2016,35(3):653-664.
    [27] 黄戒介,房倚天,王洋.现代煤气化技术的开发与进展[J].燃料化学学报,2002,30(5):385-391.
    [28] 赵丽红.煤热解与气化反应性的研究[D].太原:太原理工大学,2007.
  • 期刊类型引用(1)

    1. 刘立春. 煤矿掘进工作面过CCS钻孔技术与实施方案. 内蒙古煤炭经济. 2022(20): 18-20 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  40
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 2
出版历程
  • 发布日期:  2020-08-19

目录

    /

    返回文章
    返回