基于综合探查手段的深埋矿井工作面顶板富水性分区
Water-rich Partition of Working Face Roof of Deep Buried Mine Based on Comprehensive Exploration Methods
-
摘要: 以巴彦高勒煤矿311101首采工作面为例,在工作面回采前,先通过瞬变电磁法、音频电透视法相结合的物探工程,探测煤层顶板富水异常区,再布置钻探工程进行顶板水疏放,掌握钻孔涌水量和水压分布情况。综合物探和钻探工程成果,最终确定划分工作面顶板富水区。结果表明:顶板物探工程探测出6处富水异常区,施工的56个顶板水疏放钻孔中,钻孔涌水量和水压分别划分为4个数值区间,综合分析后将工作面顶板富水区划分为4个,并在工作面回采过程明显发现,每经过1处富水区时,工作面涌水量均会出现1次“阶梯式”增长,验证煤层顶板含水层富水性分区的合理性和准确性。Abstract: The 311101 first mining face in Bayangaole Coal Mine is taken as the example. Before mining in the working face, geophysical exploration project combining transient electromagnetic method with audio frequency electric perspective method are used to detect the abnormal water-rich area of the coal seam roof. Then the drilling project is arranged to dredge roof water and master the distribution of water inflow and water pressure. Based on the results of geophysical exploration and drilling engineering, the water-rich area on the roof of the working face is determined and divided. The results show that six abnormal water-rich areas are detected in the roof geophysical exploration project, and the water inflow and water pressure of the fifty-six roof water drainage boreholes are divided into four numerical intervals. After comprehensive analysis, the roof water-rich area of the working face is divided into four parts; in the mining process of the working face, it is obvious that the stepped increase will appear for the water inflow of the working face for every water-rich area. This phenomenon verifies the rationality and accuracy of water-rich partition of the roof aquifers.
-
-
[1] 谢和平,高峰,鞠杨,等.深部煤炭资源流态化开采理论与技术构想[J].煤炭学报,2017,42(3):547-556. [2] 贾建称,张妙逢,吴艳.深部煤炭资源安全高效开发地质保障系统研究[J].煤田地质与勘探,2012,40(6):1-7. [3] 李文平,乔伟,李小琴,等.深部矿井水害、评价方法与治水勘探方向[J].煤炭学报,2019,44(8):2437. [4] 张党育.深部开采矿井水害区域治理关键技术研究及发展[J].煤炭科学技术,2017,45(8):8-12. [5] 薛建坤.基于分形理论的富水性指数法在含水层富水性评价中的应用[J].煤矿安全,2020,51(2):197. [6] 洪益青,祁和刚,丁湘,等.蒙陕矿区深部侏罗纪煤田顶板水害防控技术现状与展望[J].中国煤炭地质,2017,29(12):55-58. [7] 邸春生,丁湘,黄浩.深埋侏罗系煤层顶板水探放技术实践—以呼吉尔特矿区葫芦素矿井为例[J].煤田地质与勘探,2016,44(6):96-100. [8] 杨建,刘基,黄浩,等.鄂尔多斯盆地北部深埋区“地貌-沉积”控水关键要素研究[J].地球科学进展,2019,34(5):523-530. [9] 徐圣集.呼吉尔特矿区深埋工作面顶板水文地质特征[J].煤矿安全,2019,50(9):179-182. [10] 方刚,蔡玥.基于沉积控水分析的巴拉素井田富水性分区研究[J].干旱区资源与环境,2019,33(3):105. [11] 黄欢,朱宏军.基于“富水性指数法”的煤层顶板含水层涌水危险性评价[J].煤矿安全,2020,51(2):192. [12] 李梁宁,魏久传,李立尧,等.基于测井资料的含水层富水性预测模型:以鄂尔多斯地区营盘壕井田为例[J].中国矿业,2019,28(9):143-147. [13] 刘基,杨建,王强民.基于沉积规律的煤层顶板含水层富水性研究[J].煤矿安全,2018,49(1):69-72. [14] 黄浩,方刚,梁向阳.呼吉尔特矿区侏罗系深埋煤层导水断裂带发育高度研究[J].煤矿安全,2019,50(10):22-28. [15] 代凤强.超前探测技术在呼吉尔特矿区的应用及仪器选用[J].煤炭技术,2015,34(5):97-99. [16] 王鹏飞,代凤强,王根盛,等.音频电穿透技术在呼吉尔特矿区的应用[J].煤炭技术,2015,34(7):124. [17] 方刚.榆横南区煤层顶板富水性探查研究及治理评价[J].矿业安全与环保,2017,44(5):98-102. [18] 刘基,杨建,王强民,等.红庆河煤矿煤层顶板含水层沉积规律研究[J].煤炭工程,2018,50(4):97-99. [19] 方刚.巴拉素煤矿先期开采地段顶板涌(突)水危险性评价及防治措施[J].煤矿安全,2018,49(12):189. -
期刊类型引用(5)
1. 任兴怀. 黄陵矿智能生产系统改造设计. 陕西煤炭. 2024(03): 100-103+144 . 百度学术
2. 张绍斌. 矿用5G综合基站设计及应用. 工矿自动化. 2024(S1): 57-60 . 百度学术
3. 尹东升. 5G-700 MHz技术在三元矿井下应用. 现代矿业. 2023(07): 252-255+258 . 百度学术
4. 郝永亮,袁凤培,陈辉. 基于嵌入式软PLC的矿用UPS电源控制系统的设计与实现. 煤矿机电. 2023(04): 12-17+24 . 百度学术
5. 张金豪,陈敏. Wi-Fi 6技术在煤矿井下的应用. 煤矿安全. 2020(12): 148-150+154 . 本站查看
其他类型引用(3)
计量
- 文章访问数: 26
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 8