寺家庄矿15106工作面顶板低位抽放巷合理层位研究
Study on Reasonable Level of Roof Low Level Drainage Roadway in Sijiazhuang 15106 Working Face
-
摘要: 为了解决寺家庄矿15106工作面上隅角瓦斯易积聚的难题,基于上覆岩层破坏的“O”型圈理论,提出沿走向在顶板布置低位抽放巷方法。基于相似模型实验和理论计算得到“O”型圈离层裂隙区范围为采动侧0~20 m,低位抽放巷位置范围应与工作面顶板垂距5~9 m,与回风巷内错距0.8~21.5 m。FLUENT模拟结果表明:低位抽放巷位置为垂距7~9 m,内错距3~9 m时,抽采效果最佳。为了便于下行钻孔的实施,现场将低位抽放巷布置位置为垂距7.2 m,与回风巷内错距5.1 m,回采初期,由于大裂隙尚未形成,上隅角瓦斯浓度存在超限危险,正常抽采后,低位高抽巷瓦斯纯流量约为34.7 m3/min,上隅角瓦斯浓度稳定在0.47%,符合规程要求,解决了上隅角瓦斯积聚的问题。Abstract: In order to solve the problem of easy accumulation of corner gas in 15106 working face of Sijiazhuang Mine, based on the “O” ring theory of overburden rock damage, a method of arranging low-level drainage lanes on the roof was proposed. Based on similar model experiments and theoretical calculations, it is obtained that the fracture zone of the “O” ring delaminated zone is 0-20 m on the mining side. The position of the low-level drainage lane should be 5-9 m from the roof of the working face, and within the return air lane. The offset is 0.8-21.5 m. FLUENT simulation results show that the drainage effect is the best when the low-level drainage lane is at a vertical distance of 7-9 m and an internal offset of 3-9 m. In order to facilitate the implementation of downhole drilling, the layout of the low-level drainage lane was set at a vertical distance of 7.2 m, and the offset distance from the return air lane was 5.1 m. At the beginning of the mining, because the large cracks have not yet formed, the gas concentration at the upper corner is dangerous after normal drainage, the gas flow in the low-level and high-drainage lane is about 34.7 m3 /min, and the gas concentration in the upper corner is stable at 0.47%, which meets the requirements of the regulations and solves the problem of gas accumulation in the upper corner.
-
Keywords:
- gas drainage /
- upper corner /
- similar experiment /
- numerical simulation /
- low drainage roadway
-
-
[1] 林柏泉,张建国,翟成,等.近距离保护层开采采场下行通风瓦斯涌出及分布规律[J].中国矿业大学学报,2008,37(1):24-29. [2] 魏春荣,李艳霞,孙建华,等.灰色-分源预测法对煤矿瓦斯涌出量的应用研究[J].采矿与安全工程学报,2013,30(4):628-632. [3] 王海峰,方亮,程远平,等.基于岩层移动的下邻近层卸压瓦斯抽采及应用[J].采矿与安全工程学报,2013,30(1):128-131. [4] 杜瀚林,于贵生.高瓦斯易自燃煤层高抽巷瓦斯抽采与浮煤自燃耦合研究[J].煤矿安全,2019,50(12):163-169. [5] 武帅,邢玉忠.基于偏“W”型通风系统-走向高抽巷的采空区瓦斯治理技术[J].煤矿安全,2019,50(3):177-180. [6] 刘佳佳,杨明,魏春荣.高抽巷抽采负压优化的数值模拟[J].煤矿安全,2018,49(2):35-38. [7] 钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996(3):2-7. [8] 姜福兴.岩层质量指数及其应用[J].岩石力学与工程学报,1994(3):270-278. [9] 高延法.岩移“四带”模型与动态位移反分析[J].煤炭学报,1996(1):51-56. [10] 杨枫,郑金龙,王联.近距离煤层群开采工作面瓦斯超限治理技术研究[J].煤炭科学技术,2019,47(5):126-131. [11] 徐永佳.高瓦斯矿井高抽巷合理布置及终巷位置确定研究[J].煤炭科学技术,2018,46(11):93-100. [12] 王伟,程远平,刘洪永,等.基于sigmoid函数的采空区渗透率模型及瓦斯流场模拟应用[J].采矿与安全工程学报,2017,34(6):1232-1239. [13] 宋卫华,李幼泽,韩彦龙,等.高瓦斯综放工作面高抽巷合理层位的确定[J].煤炭科学技术,2017,45(4):72-76. [14] Launder B E, Spalding D B. Lectures in Mathematical Models of Turbulence[M]. London: Academic Press,1972. [15] 王茂华.综放面采空区埋管抽采下瓦斯运移规律模拟研究[D].阜新:辽宁工程技术大学,2013. [16] 张丹丹.上隅角插管抽采时采空区漏风及瓦斯分布数值模拟研究[D].焦作:河南理工大学,2012. [17] 李宗翔,衣刚,武建国,等.基于“O”型垮落及耗氧非均匀采空区自燃分布特征[J].煤炭学报,2012,37(3):484-489. [18] 李树刚,张伟,邹银先,等.综放采空区瓦斯渗流规律数值模拟研究[J].矿业安全与环保,2008(2):1-3. [19] 李东印,王杰,王伸,等.首山一矿12070工作面走向高抽巷合理位置研究[J].河南理工大学学报(自然科学版),2018,37(5):1-7. [20] 雷树业,王利群,贾兰庆,等.颗粒床孔隙率与渗透率的关系[J].清华大学学报(自然科学版),1998(5):78-81. -
期刊类型引用(2)
1. 王伟,何金先,张晓丽,李聚豪,黄正鑫,孙沛琳,宋佳遥. 筠连地区上二叠统乐平组层序地层及沉积相研究. 中国煤炭地质. 2024(01): 1-11 . 百度学术
2. 郭红. 煤层气有利区潜力评价及勘查安全风险评价. 煤炭与化工. 2022(07): 105-108+104 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 29
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 2