深部采空区煤层底板滞后破坏特征
Delayed Failure Characteristics of Deep Coal Seam Floor in Goaf
-
摘要: 为分析深部采空区煤层底板滞后破坏特征,运用悬臂梁模型分析裂纹面间锁固段的变形破坏特征,通过试验分析岩样加载至塑性阶段后卸载再加载过程中的体积应变与偏应力的关系,结合煤层底板注水试验实测数据分析深部煤层底板岩体在采空区重新压实过程中的渗透性能变化。研究表明,裂纹面间锁固段变形破坏程度在采动剪切滑移和采动卸荷过程中逐渐增大;处于塑性状态的岩样在轴向应力卸载后再加载至卸载点81 MPa时,体积应变由0.000 56增大至0.001 1;现场实测发现距煤层底板18.19 m处的岩体在工作面推过测点3.6~15.8 m的过程中出现裂纹扩展、变形破坏,在工作面推过测点20.6~30.9 m过程中,底板岩体再次发生变形破坏,说明深部煤层底板在加载至塑性状态后卸荷并重新承载的过程中仍存在变形破坏可能性。Abstract: To study the delayed failure characteristics of deep coal seam floor in goaf, the deformation and failure characteristics of the locking section between the crack surfaces are analyzed by using the cantilever beam model. The relationship between volumetric strain and partial stress in the unloading and reloading process of rock samples after loading into the plastic stage is analyzed by laboratory test. Finally, the change of permeability of deep coal floor rock mass in the process of goaf recompaction is analyzed with the measured data of water injection test in coal seam floor. The results show that the deformation and failure degree of the interlock section between the crack surfaces increases gradually in the process of mining shear slip and mining unloading; the rock sample in the plastic state is loaded to the unloading point of about 81 MPa after the axial stress unloading, and the volume strain increases from 0.000 56 mm to 0.001 1 mm. Through the field measurement, it is found that the crack propagation and deformation failure appears in the rock mass 18.19 m of the coal floor in the process of the working face pushing through the measuring point from 3.6 m to 15.8 m. Meanwhile, the deformation failure of the coal floor appears again in the process of the working face pushing from 20.6 m to 30.9 m, which indicates that the deep coal seam floor still has the possibility of deformation and failure in the process of unloading and reloading after loading to the plastic state.
-
Keywords:
- loading and unloading /
- reloading /
- delayed failure /
- goaf /
- coal seam floor
-
-
[1] 王作宇,刘鸿泉,王培彝,等.承压水上采煤学科理论与实践[J].煤炭学报,1994,19(1):40-48. [2] 王作宇.底板零位破坏带最大深度的分析计算[J].煤炭科学技术,1992(2):2-6. [3] 张风达,高召宁,孟祥瑞.采场底板塑性区分布及破坏机理研究[J].长江科学院院报,2012,29(11):59. [4] 王连国,韩猛,王占盛,等.采场底板应力分布与破坏规律研究[J].采矿与安全工程学报,2013,30(3):317-322. [5] 孟祥瑞,徐铖辉,高召宁,等.采场底板应力分布及破坏机理[J].煤炭学报,2010,35(11):1832-1836. [6] 刘伟韬,穆殿瑞,谢祥祥,等.倾斜煤层底板采动应力分布规律及破坏特征[J].采矿与安全工程学报,2018,35(4):756-764. [7] 彭苏萍,王金安.承压水体上安全采煤[M].北京:煤炭工业出版社,2001. [8] 鲁海峰,姚多喜.采动底板层状岩体应力分布规律及破坏深度研究[J].岩石力学与工程学报,2014,33(10):2030-2039. [9] 黎良杰.钱鸣高,闻全,等.底板岩体结构稳定性与底板突水关系的研究[J].中国矿业大学学报,1995(4):18-23. [10] 李海龙,白海波,马丹,等.采动动载作用下底板岩层裂隙演化规律的相似模拟研究[J].采矿与安全工程学报,2018,35(2):366-372. [11] 张风达,申宝宏,康永华.考虑卸荷作用的底板突水破坏机制研究[J].岩土力学,2016,37(2):431-438. [12] 张风达,申宝宏.深部煤层底板变形破坏特征分析[J].采矿与安全工程学报,2019,36(1):44-50. [13] 李春元,张勇,彭帅,等.深部开采底板岩体卸荷损伤的强扰动危险性分析[J].岩土力学,2018,39(11):3957-3968. [14] 李春元,张勇,左建平,等.深部开采砌体梁失稳扰动底板破坏力学行为及分区特征[J].煤炭学报,2019, 44(5):1508-1520. [15] 李浩,白海波,武建军,等.基于新型加卸载本构模型底板损伤规律研究[J].采矿与安全工程学报,2018, 35(2):373-381. [16] 葛亮涛.关于煤矿底鼓水力学机制的探讨[J].煤田地质与勘探,1986(1):33-38. [17] 孙建,王连国.采场底板倾斜隔水关键层的失稳力学判据[J].煤炭学报,2014,39(11):2276-2285. [18] 刘伟韬,刘士亮,宋文成,等.基于薄板理论的工作面底板隔水层稳定性研究[J].煤炭科学技术,2015,43(9):144-148. [19] 李白英.预防采掘工作面底板突水的理论与实践[M].北京:煤炭工业出版社,1989. [20] 施龙青,韩进.开采煤层底板“四带”划分理论与实践[J].中国矿业大学学报,2005,34(1):16-23. [21] 张风达,高召宁,孟祥瑞.采动影响下采场底板岩体渗透性研究[J].安全与环境学报,2012,12(5):222. [22] 周辉,孟凡震,卢景景,等.硬岩裂纹起裂强度和损伤强度取值方法探讨[J].岩土力学,2014,35(4):913. [23] 王宇,李晓,武艳芳,等.脆性岩石起裂应力水平与脆性指标关系探讨[J].岩石力学与工程学报,2014,33(2):264-275. [24] 张风达.深部煤层底板变形破坏机理及突水评价方法研究[D].北京:中国矿业大学(北京),2016. [25] 柴登榜.矿井地质工作手册[M].北京:煤炭工业出版社,1986. -
期刊类型引用(1)
1. 张玉军,张志巍,肖杰,李友伟,于秋鸽. 承压水体上煤层底板下位隐伏断层采动突水机制研究. 煤炭科学技术. 2023(02): 283-291 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 29
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 4