不同煤岩系统的冲击显现机理及能量演化特征分析
Analysis of Impact Mechanism and Energy Evolution Characteristics of Different Coal-Rock Systems
-
摘要: 为了进一步研究不同煤岩系统的冲击显现机理及能量演化特征,利用理论计算及RFPA数值模拟方法从能量角度对不同煤岩系统进行了对比分析。研究结果表明:顶底板发生弯曲破坏的轴向应力与顶底板强度成正比例关系;随着硬顶硬底、硬顶软底、软顶硬底和软顶软底等4种煤岩系统整体强度的逐渐降低,巷道周围最大弹性能密度依次为273、252、224、216 kJ/m3,减小了冲击能的积聚程度;此外,模拟结果很好地解释了坚硬顶底板巷道容易积聚能量并发生冲击破坏,而软弱顶板巷道可以耗散弹性能减小冲击地压的发生。Abstract: To further study the impact mechanism and energy evolution characteristics of different coal-rock systems, theoretical calculation and RFPA numerical simulation methods were used to compare and analyze different coal-rock systems from the energy point of view. The results indicate that the axial stress of the bending failure of the roof and floor is in proportion to the strength of the roof and floor. As the overall strength of four coal and rock systems, including hard top, soft top, soft top and soft top, gradually decreases, the maximum elastic energy density around the roadway is 273 kJ/m3, 252 kJ/m3, 224 kJ/m3 and 216 kJ/m3, respectively. In addition, the simulation results better prove that it is easy to accumulate energy and impact damage for the hard roof and floor roadway, on the contrary, soft roof roadway can dissipate elastic energy to reduce the occurrence of rock burst.
-
Keywords:
- rock burst /
- coal-rock system /
- impact appearance /
- energy evolution /
- numerical simulation
-
-
[1] 刘少虹,潘俊锋,夏永学.巨厚坚硬岩浆岩床破裂运动诱发冲击地压机制研究[J].岩石力学与工程学报,2019, 38(3):499-510. [2] 李海涛,刘军,赵善坤,等.考虑顶底板夹持作用的冲击地压孕灾机制试验研究[J].煤炭学报,2018,43(11): 2951-2958. [3] 李宏艳,莫云龙,孙中学,等.煤矿冲击地压灾害防控 技术研究现状及展望[J].煤炭科学技术,2019,47(1): 62-68. [4] 朱丽媛,潘一山,李忠华,等.深部矿井冲击地压、瓦斯突出复合灾害发生机理[J].煤炭学报,2018,43(11):3042-3050. [5] 李希勇,张修峰.典型深部重大冲击地压事故原因分析及防治对策[J].煤炭科学技术,2003,31(2):15. [6] 左建平,谢和平,吴爱民,等.深部煤岩单体及组合体的破坏机制与力学特性研究[J].岩石力学与工程学报,2011,30(1):84-92. [7] 王宁,姜耀东,朱登元,等.坚硬煤岩组合体变形破坏特征及冲击特性研究[J].长江科学院院报,2018,35(3):65-69. [8] 周元超,刘传孝,马德鹏,等.不同组合方式煤岩组合 体强度及声发射特征分析[J].煤矿安全,2019,50(2): 232-236. [9] 姚精明,闫永业,尹光志,等.坚硬顶板组合煤岩样破坏电磁辐射规律及其应用[J].重庆大学学报,2011, 34(5):71-75. [10] 刘刚,李连崇,肖福坤,等.“三硬”煤岩组合体冲击倾向性数值分析[J].煤矿安全,2016,47(8):198-200. [11] 侯志鹰,王家臣.忻州窑矿两硬条件冲击地压防治技术研究[J].煤炭学报,2004,29(5):550-553. [12] Zhu Guang-an, Dou Lin-ming, Li Zhen-lei, et al. Mining-induced stress changes and rock burst control in a variable-thickness coal seam[J]. Arabian Journal of Geosciences 2016, 9(5): 101-113. [13] He Jiang, Dou Lin-ming, Mu Zong-long, et al. Numerical simulation study on hard-thick roof inducing rock burst in coal mine[J]. Journal of Central South University, 2016, 23(9): 2314-2320. [14] 王旭宏,杜献杰,冯国瑞,等.“三硬”煤层巷道冲击地压发生机理研究[J].采矿与安全工程学报,2017,34(4):663-669. [15] 潘立友,张立俊,刘先贵.冲击地压预测与防治实用技术[M].徐州:中国矿业大学出版社,2006:1-12. [16] Li Nan, Wang Enyuan, Ge Maochen. The fracture mechanism and acoustic emission analysis of hard roof: a physical modeling study[J]. Arabian Journal of Geo-sciences, 2015, 8(4): 1895-1902. -
期刊类型引用(4)
1. 康志鹏,童政,徐一帆,任帅,高翔. 浅埋厚松软覆岩煤层开采顶板破断失稳规律研究. 能源与环保. 2025(02): 259-264+271 . 百度学术
2. 李东文,赵光明,刘之喜,孟祥瑞. 单轴压缩下岩石全应力应变过程中能量演化特征. 煤矿安全. 2023(02): 135-144 . 本站查看
3. 张振南,杨跃宗. 考虑顶板下沉效应的煤体卸荷动态断裂数值模拟. 隧道与地下工程灾害防治. 2021(03): 29-35 . 百度学术
4. 孙连胜,高玉良. 冲击地压在煤厚变化区的发生机制. 能源科技. 2020(07): 24-28 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 23
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 9