基于三维地质建模的煤层气井产能特征分析
Analysis of Productivity Characteristics of Coalbed Methane Based on 3D Geological Modeling
-
摘要: 借助三维地质建模软件,基于寺河西区138口单采3号煤层的气井2007—2017年的产量数据,将研究区划分为A、B、C 3个区域,对比分析煤体结构平剖面分布特征与产能时空变化特征。结果表明:研究区发育原生结构为主,含少量构造煤,基本不含碎粒煤和糜棱煤;碎裂煤含量区域分布,以C区为中心,碎裂煤含量向A 区和B区逐渐减少,C区>B区>A区;产能区域分布,平均日产气量A区>B区>C区,A区和B区域大部分气井产能可持续性较好,C区多分布产能衰减型煤层气井;发现碎裂煤含量虽然对煤层气井的早期产能有较大贡献但不利于产能的持续性,碎裂煤含量为18%左右的C区,早期产气量较高,衰减较快。Abstract: Using the geological modeling software, based on the production data of 138 CBM wells in No.3 coal seam of western Sihe minefield from 2007 to 2017, the production capacity of the study area can be divided into three zones: A, B and C. The plane and profile characteristics of coal structure and the temporal and spatial variation characteristics of productivity were compared and analyzed. The results show that the study area is mainly composed of primary structure and contains a small amount of structure coal, It basically contains no broken grain structure coal and mylonite structure coal. Regional distribution of broken structure coal content is C>B>A. Take C as the center, the broken structure coal content gradually decreases to zone A and zone B. For the capacity distribution, the average daily CBM production is A>B>C. Most wells with good CBM production capacity are distributed in the A and B zones. The C-zone has a large distribution of production-attenuated CBM wells. Although the content of broken structure coal content has a great contribution to the early production capacity of CBM wells, it is bad to the sustainability of production capacity. In the C zone with broken structure coal content of about 18%, the early gas production is higher and the decay is faster.
-
-
[1] 马平华,邵先杰,霍梦颖,等.煤储层地质建模思路与方法-以鄂尔多斯盆地东南缘韩城矿区为例[J].石油与天然气地质,2018,39(3):601-610. [2] 邓绪彪,胡青峰,魏思民.构造煤的成因-属性分类[J].工程地质学报,2014,22(5):1008-1014. [3] 刘宇,要惠芳,姬新强.韩城矿区煤体结构对煤层气排采效果分析[J].煤炭技术,2016,35(7):120-122. [4] 陈刚,胡宗全,苏坤,等.鄂东南延川南深煤层煤体结构与产气量关系分析[J].煤炭科学技术,2016,44(12):107-112. [5] 倪小明,陈鹏,李广生,等.恩村井田煤体结构与煤层气垂直井产能关系[J].天然气地球科学,2010,21(3):508-512. [6] 赵家攀,张永琪,张帅,等.煤体结构对煤层气井产能的影响及其对策[J].中国煤层气,2017,14(2):9-12. [7] 王保玉.晋城矿区煤体结构及其对煤层气井产能的影响[D].北京:中国矿业大学(北京),2015. [8] 孟召平,刘珊珊,王保玉,等.晋城矿区煤体结构及其测井响应特征研究[J].煤炭科学技术,2015,43(2):58-63. [9] 熊波,张遂安,李晓友,等.沁水盆地安泽区块3号煤层煤体结构及其控气作用[J].煤田地质与勘探,2016,44(3):40-45. [10] 边利恒,熊先钺,王伟,等.韩城区块煤体结构分布规律及射孔优化方法[J].煤炭学报,2017,42(S1):209. [11] 陈博,汤达祯,张玉攀,等.韩城矿区H3井组煤体结构测井反演及三维地质建模[J].煤炭科学技术,2019,47(7):88-94. [12] Tang Shuling, Tang Dazhen, Li Song,et al. Fracture system identification of coal reservoir and the productivity differences of CBM wells with different coal structures:A case in the Yanchuannan Block, Ordos Basin[J]. Journal of Petroleum Science and Enginee-ring, 2018, 161: 175-189. [13] 常会珍,郝春生,张蒙,等.寺河井田煤层气产能分布特征及影响因素分析[J].煤炭科学技术,2019,47(6):171-177. [14] 吴胜和.储层表征与建模[M].北京:石油工业出版社,2010. [15] 宋海渤,黄旭日.油气储层建模方法综述[J].天然气勘探与开发,2008(3):53-57. [16] 陈召英,王保玉,郝海金,等.寺河区块煤层气井排采特征及抽采效果分析[J].煤炭科学技术,2017,45(7):100-105. -
期刊类型引用(4)
1. 李勇,陈祖国,徐建军,周加佳,苏善博,张震. 寺河井田3号煤层含气量三维建模. 科技和产业. 2023(22): 275-280 . 百度学术
2. 陈双双,张冬武,陈文志. 建筑用大理岩矿地质储量建模分析与资源管理. 山西建筑. 2022(09): 95-98 . 百度学术
3. 宣涛,王文升,刘灵童,李建荣,秦鹏. 不连续、薄互层煤层气地质建模技术——以澳大利亚苏拉特盆地为例. 中国煤炭地质. 2021(06): 31-36+68 . 百度学术
4. 冯绪兴,谭学斌,郝少伟,吴垚垒. 余吾矿煤层气井产能主控因素分析. 能源与环保. 2020(11): 77-81 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 42
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 6