• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

大流速地下水作用下多圈冻结孔优化布置方法研究

董艳宾, 荣传新, 王彬, 杨凡

董艳宾, 荣传新, 王彬, 杨凡. 大流速地下水作用下多圈冻结孔优化布置方法研究[J]. 煤矿安全, 2020, 51(4): 18-25.
引用本文: 董艳宾, 荣传新, 王彬, 杨凡. 大流速地下水作用下多圈冻结孔优化布置方法研究[J]. 煤矿安全, 2020, 51(4): 18-25.
DONG Yanbin, RONG Chuanxin, WANG Bin, YANG Fan. Study on Optimal Arrangement Method of Multi-circle Frozen Hole Under Action of Large Velocity Groundwater[J]. Safety in Coal Mines, 2020, 51(4): 18-25.
Citation: DONG Yanbin, RONG Chuanxin, WANG Bin, YANG Fan. Study on Optimal Arrangement Method of Multi-circle Frozen Hole Under Action of Large Velocity Groundwater[J]. Safety in Coal Mines, 2020, 51(4): 18-25.

大流速地下水作用下多圈冻结孔优化布置方法研究

Study on Optimal Arrangement Method of Multi-circle Frozen Hole Under Action of Large Velocity Groundwater

  • 摘要: 为了解决大流速地下水作用下多圈冻结管形成的冻结壁不易交圈或交圈时间延长等工程问题,提出采用在水流上游位置加密布置冻结管的方法对常规冻结方案进行优化设计。基于表观热容法构建了水热耦合数学模型,并通过大型物理模型试验对数学模型的合理性进行了验证。运用该数学模型对淮南潘一矿原冻结设计参数及其优化方案进行了分析。结果表明:对双圈管的外圈上游120°范围内的冻结管进行加密处理后,当地下水流速为10、15、20 m/d时,优化方案相较于常规方案在3种流速下的冻结壁交圈时间分别提前了7、13、57 d,并且对应相同的冻结时间,优化后的冻结壁的厚度明显增加。
    Abstract: To solve the problem that the frozen wall formed by multi-circle freezing pipes is not easy to be closed under the action of groundwater with high flow rate, in view of the action characteristics of groundwater on the artificial freezing temperature field, it was proposed to optimize the design of the conventional freezing scheme by encrypting the freezing pipes at the upstream position of the water flow. The hydrothermal coupling mathematical model was constructed based on the apparent heat capacity method, and the rationality of the mathematical model was verified by large physical model tests. The mathematical model was used to analyze the effect of the freezing optimization scheme of a shaft in Huainan Mining Area. The results show: after encrypting the freezing pipes in the range of 120 degrees upstream of the outer ring of the double-loop pipes, compared with the conventional scheme, the closure time of the frozen wall at three flow rates was shortened by 7 d, 13 d and 57 d, respectively, when the groundwater flow rate was 10 m/d, 15 m/d, 20 m/d. And the thickness of the frozen wall was obviously increased corresponding to the same freezing time.
  • [1] Russo G, Corbo A, Cavuoto F, et al. Artificial Ground Freezing to excavate a tunnel in sandy soil. Measurements and back analysis[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2015, 50:226-238.
    [2] Pimentel E, Papakonstantinou S, Anagnostou G. Numerical interpretation of temperature distributions from three ground freezing applications in urban tunnelling[J]. Tunnelling and Underground Space Technology, 2012, 28(1):57-69.
    [3] Haxaire, Aukenthaler M, Brinkgreve R B J. Application of a Thermo-hydro-mechanical Model for Freezing and Thawing[J]. Procedia Engineering, 2017,191:74-81.
    [4] Neaupane K M, Yamabe T, Yoshinaka R. Simulation of a fully coupled thermo hydro mechanical system in freezing and thawing rock[J]. International Journal of Rock Mechanics & Mining Sciences, 1999, 36(5): 563.
    [5] 徐光苗.寒区岩体低温、冻融损伤力学特性及多场耦合研究[D].北京:中国科学院研究生院(武汉岩土力学研究所),2006.
    [6] 周晓敏,王梦恕,张绪忠.渗流作用下地层冻结壁形成的模型试验研究[J].煤炭学报,2005,30(2):196.
    [7] Huang R C, Changb M, Tsaic Y S, et al. Influence Of Seepage Flow On Temperature Field Around An Artificial Frozen Soil Through Model Testing And Numerical Simulations[C]//Southeast Asian Geotechnical Conference. Singapore, 2013: 973-978.
    [8] LiYan Lao, ZhiQiang Ji, LiangLiang Huang, et al. Research on the temperature field of a partially freezing sand barrier with groundwater seepage[J]. Sciences in Cold and Arid Regions, 2017, 9(3): 280.
    [9] 王朝晖,朱向荣,曾国熙,等.动水条件下土层液氮冻结模型试验的研究[J].浙江大学学报(自然科学版),1998,32(5):534-540.
    [10] Vitel M, Rouabhi A, Tijani M, et al. Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities[J]. Computers & Geotechnics, 2015, 63:99-111.
    [11] Anagnostou G, Sres A, Pimentel E. Large-scale laboratory tests on artificial ground freezing under seepage-flow conditions[J]. Géotechnique, 2012, 62(3):227.
    [12] 杨平,皮爱如.高流速地下水流地层冻结壁形成的研究[J].岩土工程学报,2001,23(2):167-171.
    [13] 高娟,冯梅梅,杨维好.渗流作用下裂隙岩体冻结温度场分布规律研究[J].采矿与安全工程学报. 2013, 30(1):68-73.
    [14] 刘建刚,刘泉,周冬冬,等.地下水横向水平流速对人工水平冻结壁形成的影响[J].应用基础与工程科学学报,2017(2):258-265.
    [15] Vitel M, Rouabhi A, Tijani M, et al. Modeling heat and mass transfer during ground freezing subjected to high seepage velocities[J]. Computers & Geotechnics, 2016, 73:1-15.
    [16] Vitel M, Rouabhi A, Tijani M, et al. Thermo-hydraulic modeling of artificial ground freezing: Application to an underground mine in fractured sandstone[J]. Computers & Geotechnics, 2016, 75:80-92.
    [17] Shibing Huang,Yunlin Guo,Yanzhang Liu, et al. Study on the influence of water flow on temperature around freeze pipes and its distribution optimization during artificial ground freezing[J]. Applied Thermal Engineering,2018,135:435-445.
    [18] Shibing Huang, Quansheng Liu, Aiping Cheng, et al. A fully coupled thermo-hydro-mechanical model including the determination of coupling parameters for freezing rock[J]. International Journal of Rock Mechanics and Mining Sciences,2018,103:205-214.
    [19] 黄诗冰,刘泉声,程爱平,等.低温裂隙岩体水-热耦合模型研究及数值分析[J].岩土力学,2018,39(2):735-744.
    [20] Ahmed Marwan, MengMeng Zhou, M Zaki Abdelrehim, et al. Optimization of artificial ground freezing in tunneling in the presence of seepage flow[J]. Computers and Geotechnics,2016,75:112-125.
  • 期刊类型引用(10)

    1. 胥明,陈星,张慧鹏,夏明,张康健,张志强. 双线隧道地层顺次冻结流热耦合分析. 人民长江. 2025(01): 164-172 . 百度学术
    2. 高国耀,郭伟,任宇晓,祝显鹏,郭文秀,闫澍旺. 渗流下砂-黏复合地层人工冻结多场耦合研究. 天津大学学报(自然科学与工程技术版). 2025(02): 208-220 . 百度学术
    3. 任继勋,佳琳,阳建新,胡俊,林小淇,曾东灵. 渗流条件下地下水含盐量对基坑坑底冻结温度场影响的数值模拟. 长江科学院院报. 2024(01): 151-158+166 . 百度学术
    4. 刘爽,李晓康,李旭,聂雯,林旸,盛志刚. 渗流作用下粗粒土冻结壁交圈规律及预测模型探索. 冰川冻土. 2024(01): 247-259 . 百度学术
    5. 周瑶,谢志清,刘长友,潘海洋. 富水砂卵石地层动水注浆模型试验. 地下空间与工程学报. 2023(06): 1926-1937 . 百度学术
    6. 姜晓刚,荣传新,王彬,孙世成,施鑫,张世琪,张伟. 大流速渗透地层立井冻结方案优化及影响因素分析. 煤炭技术. 2022(02): 35-38 . 百度学术
    7. 周为军,吴洋,荣传新,王彬. 临涣煤矿中央风井冻结温度场数值计算分析. 建井技术. 2022(04): 43-48 . 百度学术
    8. 程桦,王彬,赵久良,姚直书,荣传新. 富水砂卵石地层冻结壁缺口致因及弥合技术研究. 煤炭工程. 2021(10): 1-8 . 百度学术
    9. 潘旭东,白云龙,白云飞,张志强,廖霖. 富水地层冻结法施工渗流场对温度场的影响规律研究. 现代隧道技术. 2021(05): 122-128 . 百度学术
    10. 张伟,荣传新,王彬,施鑫,孙世成,姜晓刚. 里必矿冻结施工方案数值模拟优化研究. 建井技术. 2021(05): 46-51 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  55
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 17
出版历程
  • 发布日期:  2020-04-19

目录

    /

    返回文章
    返回