喷嘴螺旋倾角对雾化性能影响的试验研究
Experimental Study on Influence of Nozzle Spiral Inclination Angle on Atomization Performance
-
摘要: 通过试验研究以理解螺旋喷嘴的雾化性能。利用激光粒度分析仪和高速摄像机试验研究了喷雾锥角,喷嘴流量,喷雾射程,粒子速度,雾滴的平均直径(SMD)等性能参数。结果表明,在同一喷射压力下,液体的喷射距离、喷嘴出口雾化角和雾粒的轴向速度都随着喷嘴螺旋倾角的增大而减小,然而,喷嘴流量和雾粒SMD随着喷嘴螺旋倾角的增大而增大。在系统喷射压力为2 MPa时,螺旋倾角对喷嘴流量的影响最小,其减小幅度仅为0.004 L/s;且在距喷嘴口25 cm处,30°螺旋喷嘴在系统压力为3 MPa时,雾粒SMD最小,最小为30.04 μm;在系统喷射压力为3 MPa时,螺旋倾角对雾粒轴向速度的影响最大,其速度变化幅度为10.3 m/s。Abstract: Through experimental research to understand the atomization performance of the spiral nozzle, the performance parameters such as spray cone angle, nozzle flow rate, spray range, particle velocity, and average diameter of droplets (SMD) were studied by laser particle size analyzer and high speed camera. The results show that under the same injection pressure, the jet distance of the liquid, the atomization angle of the nozzle outlet and the axial velocity of the fog particle decrease with the increase of the nozzle inclination angle. However, the nozzle flow and fog particle SMD increase with the increase of the spiral inclination of the nozzle. When the system injection pressure is 2 MPa, the spiral tilt angle has the least influence on the nozzle flow rate, and the reduction is only 0.004 L/s; and at 25 cm from the nozzle, the 30° spiral nozzle at the system pressure is 3 MPa, fog particle SMD is the smallest, with a minimum of 30.04 m; when the system injection pressure is 3 MPa, the spiral tilt angle has the greatest influence on the axial velocity of the fog particle, and the change range of its velocity is 10.3 m/s.
-
Keywords:
- spiral tilt angle /
- nozzle /
- droplet SMD /
- atomizing angle /
- injection pressure /
- spray and dust reduction
-
-
[1] 庞杰文,谢建林,李川田,等.大采高综采工作面粉尘分布特征研究[J].煤炭科学与技术,2017,45(3):78. [2] 李洪喜,张建林,刘燕萍,等.矿井降尘超声雾化喷嘴空化流动特性仿真研究[J].煤矿安全,2018,49(1):40-43. [3] 王鹏飞,刘荣华,汤梦,等.煤矿井下高压喷雾雾化特性及其降尘效果实验研究[J].煤炭学报,2015,40(9):2124-2130. [4] Payri R, Salvador FJ, Gimeno J,et al.Diesel nozzle geometry influence on spray liquid-phase fuel penetration inevaporative conditions[J]. Fuel,2008,87(7):1165. [5] Husted, Bjarne Paulsen, Petersson Per,et al. Comparison of PIV and PDA droplet velocity measurement techniques on two high-pressure water mist nozzles[J]. Fire Safety Journal, 2009, 44(8): 1030-1045. [6] M R Soltani, K Ghorbanian, M Ashjaee,et al. Spray characteristics of a liquid liquid coaxial swirl atomizer at different mass flow rates[J]. Aerospace Science and Technology, 2005, 53(9): 592-604. [7] 孙晓霞.超声波雾化喷嘴的研究进展[J].工业炉,2004, 26(1):19-23. [8] 李洁莹.井下煤尘产生机理分析[J].山西焦煤科技,2011,35(10):36-37. [9] Rashad M, Yong H, Zheng Z. Effect of geometric parameters on spray characteristics of pressure swirl atomizers[J]. Int. J. Hydrogen Energy, 2016, 41(35): 15790. [10] Ebrahimi A, Langrish T A G. Spray drying and crystallization of lactose with humid air in a straight-through system[J]. Drying Technol, 2015, 33(7): 808-816. [11] WU Liyin, WANG Zhenguo, LI Qinglian,et al.Investigations on the droplet distributions in the atomization of kerosene jets in supersonic crossflows[J]. Applied Physics Letters, 2015, 107(10): 1-4. [12] 梁钦,高贵军,刘邱祖.压力型雾化喷嘴射流喷雾气-液两相流数值模拟[J].中国粉体技术,2015,21(2):5-9. [13] 肖彬.内混式两相流喷嘴的雾化特性研究[J].科学技术与工程,2012,12(27):6912-6917.
计量
- 文章访问数: 49
- HTML全文浏览量: 0
- PDF下载量: 1