冻结井壁纤维混杂与微膨胀高性能混凝土配制与抗裂试验
Preparation and Crack Resistance Test of High Performance Concrete with Fiber Hybrid and Micro Expansion Freezing Shaft Lining
-
摘要: 为解决深厚表土层冻结井壁混凝土开裂渗漏水难题,提出采用纤维混杂与微膨胀高性能混凝土。以冻结井壁普通混凝土配合比为基础,采用正交试验法,考察了水胶比、膨胀剂掺量、聚乙烯醇纤维掺量及仿钢纤维掺量对纤维混杂与微膨胀高性能混凝土的抗压强度和劈裂抗拉强度的影响,综合平衡确定试验的最佳配合比为水∶水泥∶NF-F∶膨胀剂∶聚乙烯醇纤维∶聚丙烯仿钢纤维∶砂∶玄武岩碎石=166.112∶410∶130∶32.8∶1.092∶5∶615.992∶1 095.096。抗裂试验结果表明,纤维混杂与膨胀剂复合混凝土具有优良的抗裂性能。Abstract: To solve the leakage problem of concrete cracking and seepage in the freezing shaft lining of deep topsoil, it is proposed to use hybrid fibers and micro expansion high-performance concrete. Based on the normal concrete mix ratio of the frozen shaft lining, the orthogonal test method was used to investigate the effect of the water-to-binder ratio, the amount of expansion agent, the amount of polyvinyl alcohol fiber and the amount of imitation steel fiber on the compressive strength and splitting tensile strength of fiber hybrid and micro expansion high performance concrete. Comprehensive balance determines that the best mix ratio of this test is water: cement: NF-F: expansion agent: polyvinyl alcohol fiber: polypropylene imitation steel fiber: sand: basalt gravel =166.112:410:130:32.8:1.092:5:615.992:1 095.096. The crack resistance test results show that the fiber hybrid and expansion agent composite concrete has excellent crack resistance.
-
Keywords:
- shaft lining concrete /
- fiber hybrid /
- micro expansion /
- optimum mix ratio /
- crack resistance /
- freezing sinking
-
-
[1] 刘志强.矿井建设技术发展概况及展望[J].煤炭工程,2018,50(6):44-46. [2] 臧培刚,王伟,马宏强,等.超深厚冲击层冻结井筒施工关键技术研究[J].煤炭科学技术,2017,45(8):90. [3] 管学茂,刘松辉,张海波,等.深厚冲积层冻结法凿井高性能混凝土综述[J].煤炭工程,2017,49(1):27. [4] 张涛,杨维好,陈国华,等.大体积高性能混凝土冻结井壁水化热温度场实测与分析[J].采矿与安全工程学报,2016,33(2):290-296. [5] 李康,刘娟红,卞立波.复合胶凝材料井壁高强混凝土的性能与水化机理[J].煤炭学报,2015,40(S2):353. [6] 奚家米,屈永龙,杨更社,等.西部白垩系冻结立井外壁受力与温度实测研究[J].煤矿安全,2014,45(8):68-71. [7] 许影,汪仁和.混凝土井壁水化热对白垩侏罗系地层冻结壁的影响[J].煤炭工程,2011(12):102-105. [8] 何朋立,王在泉.考虑温度效应的井壁竖向附加力反演分析[J].岩土力学,2013,34(2):3425-3430. [9] 刘金龙,陈陆望,王吉利.立井井壁温度应力特征分析[J].岩土力学,2011,32(8):2386-2390. [10] 薛维培,朱强,姚直书,等.高渗透孔隙水压对井壁混凝土性能的影响[J].材料科学与工程学报,2019,37(2):262-265. [11] 薛维培,姚直书,孔干,等.应力-渗流耦合作用下井壁混凝土力学性能试验研究[J].硅酸盐通报,2018, 37(3):985-989. [12] 姚直书,薛维培,陈廷学.深厚冲积层钻井井壁渗漏水机理和注浆技术探讨[J].煤炭科学技术,2015,43(S1):1-4. [13] 孔干,姚直书,李必达,等.钢纤维混凝土在特厚冲积层冻结井壁中的工程应用[J].煤矿安全,2017,48(3):126-128. [14] Cao Q, Cheng Y L, Cao M L, et al. Workability, strength and shrinkage of fiber reinforced expansive self-consolidating concrete[J]. Construction and Building Materials, 2017, 131: 178-185. [15] Corinaldesi V, Nardinocchi A. Mechanical characterization of Engineered Cement-based Composites prepared with hybrid fibres and expansive agent[J]. Compos Part B: Engineering, 2016, 98: 389-396. [16] 银英姿,仇贝.聚乙烯醇纤维混凝土力学性能及早期开裂试验研究[J].硅酸盐通报,2019,38(2):454. [17] 陈猛,白帅,张海鹏,等.混杂纤维混凝土抗压和抗拉性能试验研究[J].武汉理工大学学报,2014,36(10):113-117. [18] 于婧,翟天文,梁兴文,等.钢-PVA纤维混凝土流动性及力学性能研究[J].建筑材料学报,2018,21(3):402-407. [19] 姚直书,高扬,宋海清.冻结井壁防裂抗渗高性能混凝土试验研究[J].硅酸盐通报,2014,33(4):918. [20] 高润东,李向民,许清风,等.聚丙烯仿钢纤维(PPTF)透水混凝土试验研究[J].新型建筑材料,2015,42(3):1-3. [21] 李燕飞,杨建辉,丁鹏,等.单一纤维喷射混凝土的力学性能试验研究[J].玻璃钢/复合材料,2013(3):43. -
期刊类型引用(6)
1. 陈湘生,王恒,宋朝阳,陈汉青,陈曦,丁航,王磊. 冻结立井井筒机械化掘进现状及发展趋势. 煤炭科学技术. 2024(09): 1-17 . 百度学术
2. 苏胜威. 抽水蓄能电站高性能抗裂面板混凝土力学性能试验研究. 粉煤灰综合利用. 2023(01): 102-107 . 百度学术
3. 杨磊,张威,何咏嘉. 膨胀剂对大体积混凝土性能的影响研究. 粘接. 2023(04): 75-78 . 百度学术
4. 刁奶毫,姚直书,张平. 混凝土水化热对井筒外壁受力变形影响分析. 安徽理工大学学报(自然科学版). 2021(02): 62-67 . 百度学术
5. 姜美华. 高速公路高性能混凝土试验检测研究. 交通世界. 2021(18): 22-23 . 百度学术
6. 王恒,郭君华. C100高性能混凝土在冻结井筒井壁中的应用. 煤矿安全. 2021(09): 122-128 . 本站查看
其他类型引用(2)
计量
- 文章访问数: 94
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 8