褐煤热损伤过程中的孔裂隙细观特性研究
Study on Mesoscopic Characteristics of Pores and Cracks During Thermal Damage of Lignite
-
摘要: 利用高温气体加热设备,对褐煤进行不同温度的加热处理,通过电镜扫描观察到其表面的破坏形式,利用高精度的CT对试样进行X射线扫描,从宏观方面得到其破坏形式的同时对CT图像进行二值化处理,得到不同温度段褐煤的孔隙率以及裂纹的长度以及宽度。结果表明:温度作用下,褐煤固体颗粒之间产生热应力使得有机质得到热解的现象称为热破裂;热破裂效应在温度高于200 ℃后作用明显,200 ℃以下,褐煤孔裂隙演化主要是因为内部自由水及气体散失导致,200 ℃以后,热破裂占据主导作用,孔裂隙发育增幅变大,孔隙率较常温状态下增加了6.83%;热损伤低温阶段,褐煤破坏以细长裂隙为主,当温度高于200 ℃后,破坏形式以不规则的椭圆形为主。Abstract: Using high temperature gas heating equipment, lignite is heated at different temperatures. The failure forms on the surface were observed by scanning electron microscopy, and the samples were X-ray scanning with high-precision CT. The failure forms were obtained macroscopically and the CT images were processed in binarization to obtain the porosity of lignite and the length and width of cracks in different temperature sections. The results showed that under the action of temperature, thermal stress generated between solid particles of lignite resulted in the pyrolysis of organic matter, which is thermal fracture. The thermal fracture effect is obvious when the temperature is higher than 200 ℃. Below 200 ℃, the evolution of lignite pores and fractures is mainly caused by internal free water and gas loss. After 200 ℃, thermal fracture played a dominant role, and the growth rate of pores and fissures increased greatly, and the porosity increased by 6.83% compared with normal temperature. In the low temperature stage of thermal damage, the destruction of lignite is dominated by long and thin cracks. When the temperature is higher than 200 ℃, the failure form is dominated by irregular ellipses.
-
-
[1] 尹立群.我国褐煤资源及其利用前景[J].煤炭科学技术,2004,32(8):12-14. [2] 于艳梅,胡耀青,梁卫国,等.应用CT技术研究瘦煤在不同温度下孔隙变化特征[J].地球物理学报,2012, 55(2):637-644. [3] 孟巧荣,赵阳升,胡耀青,等.褐煤热破裂的显微CT实验[J].煤炭学报,2011,36(5):855-860. [4] 邓洋波,马晓旺,葛少成.长焰煤孔隙结构及其分布特性的实验研究[J].大连海事大学学报,2012,38(2):121-124. [5] 李伟,要惠芳,刘鸿福,等.基于显微CT的不同煤体结构煤三维孔隙精细表征[J].煤炭学报,2014,39(6):1127-1132. [6] 赵爱红,廖毅,唐修义.煤的孔隙结构分形定量研究[J].煤炭学报,1998,23(4):105-108. [7] 冯子军,万志军,赵阳升,等.热力耦合作用下无烟煤煤体变形特征的试验研究[J].岩石力学与工程学报,2010(8):1624-1630. [8] 陈卫忠,李术才,邱祥波,等.岩石裂纹扩展的实验与数值分析研究[J].岩石力学与工程学报,2003(1):18-23. [9] 谢克昌.煤的结构与反应性[M].北京:科学出版社,2002. [10] Li HY, Xu ZY. Microscopic characteristics of pore structure and classificationevaluation of low permeability reservoir in Xinli oilfield[J]. Petroleum Geology and Recovery Efficiency,2009,16(1): 21-25. [11] Meng Q, Zhao Y, Yu Y, et al. Micro-CT experimental study of crack evolution of lignite under different temperatures[J]. Journal of Rock Mechanics and Engineering,2010,29(12): 2475-2483. [12] Han BB, Qin Y, Zhang Z, et al. Study on coal compressibility and correction ofcompression amount based on compressibility of mercury injection test[J]. Coal Science and Technology, 2015, 43(3): 68-72. -
期刊类型引用(2)
1. 王双明,孙强,胡鑫,葛振龙,耿济世,薛圣泽,师庆民. 不同气氛下富油煤受热裂隙演化及热解动力学参数变化. 煤炭科学技术. 2024(01): 15-24 . 百度学术
2. 王晓琪,马恒,齐消寒,高科,李胜男. 热冲击煤细观损伤与能量响应的相关性研究. 安全与环境学报. 2023(02): 458-466 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 116
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 4