基于机器视觉与激光融合的刚性罐道故障定位技术
Rigid Tank Path Fault Location Technology Based on Machine Vision and Laser Fusion
-
摘要: 提出了一种基于机器视觉与激光融合的多方向矿井刚性罐道变形诊断及其定位方法。使用CCD相机、激光发射器、荧光屏、LabVIEW软件和PC组成变形诊断及其定位系统实时采集荧光屏上的光斑图像,对采集的光斑图像进行图像增强、阈值分割、图像匹配跟踪和像素质心计算等处理;在PC监控界面显示罐道情况及位置。本方法对台阶凸起高度的识别度达到88.43%,台阶凸起的长度识别度高达99.15%,深度识别率高达99.52%。试验证明该技术能实时准确地诊断矿井刚性罐道变形并快速地进行定位。Abstract: We proposed a multi-directional mine rigid tank deformation diagnosis and location method based on machine vision and laser fusion. We used CCD camera, laser, screen, LabVIEW software and PC deformation diagnosis and real-time positioning system to collect light spot image on the screen, carried out image enhancement, threshold segmentation, image matching and tracking, pixel centroid calculation and other processes for the collected spot image, displayed the status and position of tank channel on the PC monitoring interface. The recognition degree of the step bulge height is 88.43%, the length recognition degree of the step bulge is as high as 99.15%, and the depth recognition rate is as high as 99.52%. The experiment proves that the technology can accurately diagnose the deformation of the rigid tank channel in the mine and locate it quickly.
-
Keywords:
- mine hoisting /
- rigid tank path /
- deformation diagnosis /
- fault location /
- machine vision
-
-
[1] 赵传奇.罐道校直测量装置的设计[J].煤矿机械,2018, 39(7):6-7. [2] 孙哲星,孙继平.异步测时矿井人员精确定位方法[J].煤炭学报,2018,43(5):1464-1470. [3] 张立亚.基于动目标特征提取的矿井目标监测[J].煤炭学报,2017,42(S2):603-610. [4] 李大凯,韩雪锋,于佑飞,等.基于ARM的罐道间距数据采集检测系统的设计[J].煤矿机电,2014(1):9. [5] 岳亚敏.基于双激光基准的某矿井筒变形观测及防范措施[J].现代矿业,2018,34(7):202-203. [6] 郭倩倩,刘尚国,刘金龙.基于组合式激光测距的立井井筒及罐道垂直度检测[J].煤炭技术,2018,37(11):86-89. [7] Tao X, Xu D, Zhang Z, et al. Vibration measurement in highprecision for flexible structure based on microscopic vision[J]. Robotics, 2016, 5(2): 9-13. [8] Dongming F, Maria F, Ekin O, et al. A Vision-Based Sensor for Noncontact Structural, Displacement Measurement[J]. Sensors, 2015, 15(7): 16557-16575. [9] Mi Chao, Zhang Zhiwei, Huang Youfang, et al, A FAST AUTOMATED VISION SYSTEM FOR CONTAINER CORNER CASTING RECOGNITION[J]. Journal of Marine Science and Technology-Taiwan, 2016, 24(1): 54. [10] 宋宏,张云菲,吴超鹏,等.水下相位式激光测距定标方法[J/OL].红外与激光工程,2019,48(4):0406008-1. [11] 王中宇,李亚茹,郝仁杰,等.基于点特征的单目视觉位姿测量算法[J/OL].红外与激光工程,2019,48(5):0517002-1. [12] Ye X W, Yi T H, Dong C Z, et al. Multi-point displacement monitoring of bridges using a vision-based approach[J]. Wind & Structures An International Journal, 2015, 20(2): 315-326. [13] 马天兵,刘健,杜菲,等.基于机器视觉的柔性机械臂振动位移测量[J].科技导报,2018,36(13):82-87. [14] 雷振山,肖成勇,魏丽,等.LabVIEW高级编程与虚拟仪器工程应用[M].北京:中国铁道出版社,2013. -
期刊类型引用(6)
1. 王满利,杨爽,张长森. 基于改进YOLOv8n的立井刚性罐道接头错位检测算法. 煤炭科学技术. 2024(S2): 236-248 . 百度学术
2. 公希萌,赵亮凯. 基于三维激光视觉技术的平面设计图像增强和优化研究. 激光杂志. 2023(04): 158-163 . 百度学术
3. 韩菊. 机器视觉技术的红外弱小目标状态感知方法. 激光杂志. 2023(05): 236-241 . 百度学术
4. 卢建光,郭辉. 基于机器视觉的激光加工标记点定位方法. 激光杂志. 2023(05): 247-251 . 百度学术
5. 牛伟锋,宗亮亮,吴丰,涂世宇,艾凌云,胡文彬,甘维兵. 基于二维激光扫描仪的煤矿罐道形变检测装置. 工矿自动化. 2021(03): 101-104+111 . 百度学术
6. 胡文彬,吴丰,甘维兵,李盛,陈钢,艾凌云. 基于二维激光扫描技术的罐道检测算法. 红外与激光工程. 2021(10): 227-233 . 百度学术
其他类型引用(8)
计量
- 文章访问数: 84
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 14