基于气体传感器阵列的矿井可燃混合气体分析

    Analysis of Mixed Inflammable Gases in Mine Based on Gas Sensor Arrays

    • 摘要: 由于气体传感器的选择性差,交叉敏感严重,单一BP神经网络识别方法存在识别能力低,分析误差较大,在非期望节点有噪声输出等难题,影响气体分析的精度和效果。对基于常规BP神经网络的定量分析方法进行了改进,提出一种双层复合神经网络的气体分析模型,并以矿井中常见的H2S,CO和CH4 3种可燃混合气体为实验对象,进行混合气体的定量分析。实验结果表明,基于双层复合神经网络的可燃混合气体定量分析最大相对误差为4.4%,大大提高了定量分析精度。

       

      Abstract: Poor selectivity and cross sensitivity are problems of gas sensors,general BP(back propagation) neural network has low recognition ability and its error is too high to accept.A hybrid two layers neural networks is developed to improve the quantitative analysis of general BP neural network.Using two layers neural networks,three mixed inflammable gases in mine are adopted for the quantitative analysis.The result shows that recognition ability of the neural network is increased and the maximum relative error of quantitative analysis is 4.4%,the precision of quantitative analysis is increased.

       

    /

    返回文章
    返回