• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

厚松散层薄基岩浅埋煤层导水断裂带高度研究

陈辉, 曹其嘉, 韦钊, 张冬冬

陈辉, 曹其嘉, 韦钊, 张冬冬. 厚松散层薄基岩浅埋煤层导水断裂带高度研究[J]. 煤矿安全, 2020, 51(1): 38-41,46.
引用本文: 陈辉, 曹其嘉, 韦钊, 张冬冬. 厚松散层薄基岩浅埋煤层导水断裂带高度研究[J]. 煤矿安全, 2020, 51(1): 38-41,46.
CHEN Hui, CAO Qijia, WEI Zhao, ZHANG Dongdong. Study on Water-conducting Fracture Height of Shallow Buried Coal Seam with Thick Loose Bed and Thin Base Rock[J]. Safety in Coal Mines, 2020, 51(1): 38-41,46.
Citation: CHEN Hui, CAO Qijia, WEI Zhao, ZHANG Dongdong. Study on Water-conducting Fracture Height of Shallow Buried Coal Seam with Thick Loose Bed and Thin Base Rock[J]. Safety in Coal Mines, 2020, 51(1): 38-41,46.

厚松散层薄基岩浅埋煤层导水断裂带高度研究

Study on Water-conducting Fracture Height of Shallow Buried Coal Seam with Thick Loose Bed and Thin Base Rock

  • 摘要: 薄基岩浅埋煤层开采形成的导水断裂带易造成水资源破坏,导水断裂带高度确定是含水层免受破坏的关键。以青龙寺煤矿5-20101工作面为研究对象,采用物理相似模拟、理论计算及井下仰孔注水测漏法分析煤层开采导水断裂带发育高度。研究表明:工作面开采后采空区上方覆岩形成拱形梁结构,拱的边缘位置为拉应力区,该区域纵向切落裂缝为岩层的主要导水通道,导水断裂呈“八字形”分布;5-20101工作面导水断裂带发育高度为52.3~62 m,平均57.2,裂采比为24.2;导水断裂带发育不会与萨拉乌苏组含水层贯通,生产过程中不受含水层倒灌的威胁。
    Abstract: Water-conducting fissures formed in shallow seam mining in thin bedrock are easy to cause water resources damage. The determination of the height of water-conducting fissures is the key to avoid the damage of aquifers. Taking 5-20101 working face of Qinglongsi Coal Mine as the research object, the development height of water-conducting fracture zone in coal seam mining is analyzed by physical analogy simulation, theoretical calculation and water injection leak detection method. The research shows that the overburden rock above the goaf after mining forms an arch beam structure, the edge of the arch is a tension stress area, the vertical shear fracture is the main water conduction channel of the stratum, and the water conduction fracture is octagonal distribution; the height of water conduction fracture is 52.3 m to 62 m, with an average of 57.2 m, and the ratio of fracture to mining is 24.2; the development of water conduction fracture is not connected with the Sarawusu aquifer. The production process is not threatened by aquifer irrigation.
  • [1] 黄庆享.浅埋煤层的矿压特征与浅埋煤层定义 [J]. 岩石力学与工程学报,2002,21(8):3-4.
    [2] 贾后省,马念杰,赵希栋.浅埋薄基岩采煤工作面上覆岩层纵向贯通裂隙“张开-闭合”规律[J].煤炭学报,2015,40(12):2787-2793.
    [3] 卢邦稳,刘长武,刘德峰,等. 浅埋薄基岩工作面覆岩活动规律 3 维物理相似模拟研究[J]. 四川大学学报(工程科学版),2016,48(1):107-113.
    [4] 师修昌,孟召平,杨圣,等.大柳塔煤矿多煤层开采覆岩变形破坏模拟研究[J].金属矿山,2015 (3):53-57.
    [5] 钱鸣高,许家林,缪协兴.煤矿绿色开采技术的研究与实践[J].中国矿业大学学报,2003,32(4):343-348.
    [6] 马雄德,王苏健,蒋泽泉,等.神南矿区采煤导水裂隙带高度预测[J].西安科技大学学报,2016,36(5):663-667.
    [7] 赵兵朝,刘樟荣,同超,等. 覆岩导水裂隙带高度与开采参数的关系研究[J].采矿与安全工程学报,2015, 32(4):634-639.
    [8] 杨泽元,王文科,黄金廷,等.陕北风沙滩地区生态安全地下水位埋深研究[J].西北农林科技大学学报(自然科学版),2006,34(8):67-74.
    [9] 高召宁,应治中,李铭. 生态脆弱矿区煤层覆岩隔水特征及保水开采实验研究[J].矿业安全与环保,2015,42(2):12-15.
    [10] 王双明,黄庆享,范立民,等.生态脆弱矿区含( 隔) 水层特征及保水开采分区研究[J].煤炭学报,2010, 35(1):8-14.
    [11] 王连国,王占盛,黄继辉,等.薄基岩厚风积沙浅埋煤层导水裂隙带高度预计[J].采矿与安全工程学报,2012,29(5):601-615.
    [12] 范钢伟,张东升,卢鑫,等.浅埋煤层采动导水裂隙动态演化规律模拟分析[J].煤炭科学技术,2008,36(5):18-19.
    [13] 许家林,朱卫兵,王晓振.基于关键层位置的导水裂隙带高度预计方法[J].煤炭学报,2012,37(5):762.
    [14] 余学义,张恩强.开采损害学 [M].北京:煤炭工业出版社,2004:162-171.
    [15] 邢延团,郑纲,马培智.井下仰孔注水测漏法探测导水裂隙带高度的研究[J].煤田地质与勘探,2004,32 (S1):186-190.
  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  80
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 1
出版历程
  • 发布日期:  2020-01-19

目录

    /

    返回文章
    返回