东曲矿软硬煤瓦斯吸附特性对比研究
Comparison Research on Methane Adsorption Property of Soft and Hard Coals in Dongqu Coal Mine
-
摘要: 为研究不同软硬煤瓦斯吸附特性,以山西古交矿区东曲矿为研究对象,针对2组不同变质程度的软硬煤,通过高压容量法测试了其瓦斯吸附性能;同时对不同软硬煤开展了低温液氮吸附实验,分析了其孔隙结构特征,从煤体微结构层面揭示了不同软硬煤的瓦斯吸附控制机理。研究结果表明:不同软硬煤之间存在较大的吸附差异性,瓦斯吸附参数VL最大值是最小值的1.5倍;在不同软硬煤中,微孔所占比例均大于50%,煤中的孔比表面积主要由小于10 nm的微孔所贡献;构造变形作用使得煤层中的原生孔隙裂隙系统被破坏,孔隙直径减小,微孔比例增加,孔隙比表面积也在不断增大,因而,软煤较硬煤拥有更强的吸附性能。Abstract: To investigate the methane adsorption characteristics of different soft and hard coals, Dongqu Coal Mine in Gujiao Mining Area, Shanxi Province, was selected as the research object. Aimed at two groups of soft and hard coal samples with different coalification degrees, the high pressure capacity method was adopted to measure the methane adsorption properties of these samples. Low temperature liquid nitrogen adsorption experiments were carried out for these soft and hard coal samples and their pore structural characteristics were also analyzed. On the micro structure level, the control mechanism of methane adsorption was revealed for these soft and hard coal samples. The research result shows that gas adsorption capacity differs greatly among soft and hard coals. The greatest value of Langmuir volume VL is 1.5 times of the lowest value. Among all the samples, the proportion of micropores is more than 50%, and the pore specific surface area in coal is mainly contributed by micropores (< 10 nm). The original pore/fracture systems in coal seam are destroyed by tectonic deformation, leading to the reduction of pore diameter. As a consequence, the proportion occupied by micropores increases, and the pore specific surface area is also increased. Thus, the adsorption capacity of soft coal is significantly higher than that of the corresponding hard coal.
-
Keywords:
- Dongqu Coal Mine /
- soft and hard coal /
- methane adsorption /
- pore structure /
- control mechanism
-
-
[1] 于丽雅.常村矿构造煤储层特性及其影响因素[J].煤矿安全,2018,49(1):176-178. [2] 琚宜文,姜波,王桂梁,等.构造煤结构及储层物性[M].徐州:中国矿业大学出版社,2005:82-117. [3] 刘延保.极松软煤体高压吸附过程中变形特性试验研究[J].矿业安全与环保,2016,43(5):1-4. [4] 聂百胜,柳先锋,郭建华,等.水分对煤体瓦斯解吸扩散的影响[J].中国矿业大学学报,2015,44(5):781. [5] 姜波,琚宜文.构造煤结构及其储层物性特征[J].天然气工业,2004,24(5):27-29. [6] 程波,马代辉,高月.煤的灰分、挥发分与孔隙率的关联及其对瓦斯放散初速度的影响[J].矿业安全与环保,2017,44(1):12-17. [7] Sharon M S, Maria D M, Mark A E, et al. Pore characteristics of Wilcox Group Coal, U. S. Gulf Coast Region: Implications for the occurrence of coalbed gas[J]. International Journal of Coal Geology, 2015,139: 80-94. [8] 于军.不同软硬煤的结构差异性研究[J].煤矿安全,2017,48(12):5-8. [9] Frodsham K, Gayer R A. The impact of tectonic deformation upon coal seams in the South Wales coalfield, UK[J]. International Journal of Coal Geology, 1999, 38(3): 297-332. [10] 张九零,范酒源.含水量对瓦斯放散初速度影响规律的实验研究[J].煤矿开采,2017,22(2):100-101. [11] 宋晓夏,唐跃刚,李伟,等.中梁山南矿构造煤吸附孔分形特征[J].煤炭学报,2013,38(1):134-139. [12] 屈争辉,姜波,汪吉林,等.构造煤微孔特征及成因探讨[J].煤炭学报,2015,40(5):1093-1102. [13] 么玉鹏,姜波,李明.淮北朱仙庄矿构造煤孔隙结构及其分形表征研究[J].煤炭工程,2016,48(5):98. [14] 张玉贵,张子敏,曹运兴.构造煤结构与瓦斯突出[J].煤炭学报,2007,32(3):281-284. [15] 柳先锋,宋大钊,何学秋,等.微结构对软硬煤瓦斯吸附特性的影响[J].中国矿业大学学报,2018,47(1):155-161. [16] 张英华,伯玉兰,高玉坤,等.平山煤矿覆岩“三带”划分及瓦斯抽放位置的确定[J].矿业研究与开发,2017,37(5):44-48. [17] 王军.煤体表面分形对瓦斯吸附影响[J].煤矿开采,2017,22(3):9-11. [18] 李广林,郤保平,崔继明.不同地应力下水压裂隙扩展演化数值模拟分析[J].矿业研究与开发,2017,37(10):86-88. [19] 柳先锋.煤表面微结构特征与电磁辐射机理研究[D].北京:中国矿业大学(北京),2018. [20] Fu YS, Liu XF, Ge BQ, et al. Role of chemical structures in coalbed methane adsorption for anthracites and bituminous coals[J]. Adsorption, 2017, 23(5): 711-721.
计量
- 文章访问数: 66
- HTML全文浏览量: 0
- PDF下载量: 0