基于Ono-Kondo格子模型的深部煤储层CH4吸附特征研究
Study on Adsorption Characteristics of CH4 in Deep Coal Reservoir Based on Ono-Kondo Lattice Model
-
摘要: 为更准确研究深部煤储层煤层气的吸附特征,了解温度、压力、水等因素对煤层吸附CH4的影响,基于等温吸附实验,采用简化的Ono-Kondo格子模型的拟合方法,精确描述了4种煤级煤在不同温压条件下与不同流体作用前后的CH4等温吸附曲线。结果表明:压力会对CH4的吸附产生正效应,温度会对CH4的吸附产生负效应;压力越大,吸附量受温度影响程度越大;水分会降低煤对CH4的最大吸附容量,不利于CH4吸附;超临界CO2萃取作用,能够增大煤的微孔比表面积和孔体积,从而提高煤层CH4的最大吸附量;CH4的最大吸附量随煤级的变化呈现出“U”型关系。
-
关键词:
- Ono-Kondo格子模型 /
- 深部煤储层 /
- CH4 /
- 吸附特征 /
- 微孔
Abstract: To more accurately study the adsorption characteristics of coalbed methane in deep coal reservoirs, and to understand the effects of different factors such as temperature, pressure and water on adsorption of CH4 in coal seams, we accurately described the isothermal adsorption curves of CH4 in four different rank coals under different temperature and pressure conditions, before and after different fluids. In this paper, we adopted simplified Ono-Kondo lattice model fitting method. The results show that pressure has a positive effect on adsorption of CH4, and temperature has a negative effect on adsorption of CH4. The higher the pressure is, the greater the influence of adsorption on temperature. Moisture will reduce the maximum adsorption capacity of coal to CH4, which is not conducive to adsorption of CH4. Supercritical CO2 extraction can increase the micropore surface area and pore volume of coal to increase the maximum adsorption capacity of CH4 in coal seam. The maximum adsorption amount shows a “U” type relationship with the change of coal rank.-
Keywords:
- Ono-Kondo lattice model /
- deep coal reservoir /
- CH4 /
- adsorption characteristics /
- micropore
-
-
[1] 孟召平,刘珊珊,王保玉,等.不同煤体结构煤的吸附性能及其孔隙结构特征[J].煤炭学报,2015,40(8):1865-1870. [2] 于洪观,范维唐,孙茂远,等.煤中甲烷等温吸附模型的研究[J].煤炭学报,2004,29(4):463-467. [3] 毋亚文,潘结南.煤层甲烷等温吸附拟合模型[J].煤炭学报,2017,42(S2):452-458. [4] DuttaP, Bhowmik S, Das S. Methane and carbon dioxide sorption on a set of coals from India[J]. International Journal of Coal Geology, 2011, 85(3/4): 289. [5] 苏现波,张丽萍,林晓英.煤阶对煤的吸附能力的影响[J].天然气工业,2005,25(1):19-21. [6] 降文萍.煤阶对煤吸附能力影响的微观机理研究[J].中国煤层气,2009,6(2):19-22. [7] 刘盛东,梁运培,魏进涛,等.煤的等温吸附曲线对比研究[J].煤矿安全,2016,47(10):13-16. [8] 王延斌,陶传奇,倪小明,等.基于吸附势理论的深部煤储层吸附气量研究[J].煤炭学报,2018,43(6):1547-1552. [9] 孟艳军,汤达祯,许浩,等.煤层气解吸阶段划分方法及其意义[J].石油勘探与开发,2014,41(5):612. [10] 唐润池,汪吉林,常溪溪,等.超临界甲烷等温吸附模型对构造煤的适用性研究[J].煤矿安全,2017,48(6):9-12. [11] 宋昱,姜波,李明,等.低中煤级构造煤超临界甲烷吸附特性及吸附模型适用性[J].煤炭学报,2017(8):2063-2073. [12] 赵龙,秦勇,杨兆彪,等.煤中超临界甲烷等温吸附模型研究[J].天然气地球科学,2014,25(5):753-760. [13] CUI Yongjun, ZHANG Dengfeng, ZHANG Qun, et al. Features of the Excess Adsorption Isotherms of High-Pressure Methane Adsorption on Coal and Simulation Model[J]. Acta Geologica Sinica, 2010, 84: 1547-1554. [14] 李伟.CO2-ECBM中煤储层结构对CH4和CO2吸附/解吸影响的研究[D].太原:太原理工大学,2018:29-32. [15] 张登峰.二氧化碳的电石渣捕集与深部煤层封存[D].北京:中国科学院研究生院,2011:60-63. [16] Sircar S. Gibbsian surface excess for gas adsorption-revisited[J]. Industrial & Engineering Chemistry Research, 1999, 38: 3670-3682. [17] PrinzD, Littke R. Development of the micro- and ultramicroporous structure of coals with rank as deduced from the accessibility to water[J]. Fuel, 2005, 84(12): 1645-1652. [18] Li W, Liu H, Song X. Influence of Fluid Exposure on Surface Chemistry and Pore-Fracture Morphology of Various Rank Coals: Implications for Methane Recovery and CO2 Storage[J]. Energy & Fuels, 2017, 31(11): 12552-12569. -
期刊类型引用(0)
其他类型引用(1)
计量
- 文章访问数: 100
- HTML全文浏览量: 0
- PDF下载量: 1
- 被引次数: 1