申南凹煤矿顶板采动裂隙发育数值模拟研究
Numerical Simulation of Mining-induced Fracture Development of Roof of Shennanwa Coal Mine
-
摘要: 针对申南凹煤矿20102工作面开采中大量瓦斯从邻近层涌出至工作面,造成瓦斯超限,威胁矿井安全生产的问题,需采用高位钻孔抽采,钻孔目标层位直接决定高位卸压抽采效果。通过UDEC软件,采用摩尔-库伦模型建立模型,选取2号煤层及顶底板煤岩物理力学参数,并设置监测点。通过对岩层位移、应力、监测点位移以及岩层张开性裂隙及滑移变形分析,得出2号煤层开采后裂隙带最大发育高度为43 m,且竖向裂隙发育区域呈开口向下的抛物线状,离层裂隙发育宽度约21 m,竖向裂隙发育最大宽度约53 m。结合矿井实际情况,建议高位钻孔终孔布置在距煤层顶板垂直方向20~35 m,水平方向距回风巷煤壁15~30 m。Abstract: In 20102 working face of Shennanwa Coal Mine, a large amount of gas gushing from the adjacent layer to the working face causes gas over-limit and threatens the safety production of the mine. It is necessary to adopt high level drilling and extraction, and the target layer of drilling directly determines the effect of high level decompression and extraction. Through UDEC software, Mohr-Coulomb model was used to establish the model. Physical and mechanical parameters of 2# coal seam, roof and floor coal and rock were selected and monitoring points were set. Based on the analysis of rock displacement, stress, monitoring point displacement, open fracture and slip deformation, it is concluded that after mining of 2# coal seam, the maximum development height of the fracture zone is 43 m, and the vertical fracture development area is a parabola with downward opening. The development width of the ionospheric fracture is about 21 m, and the maximum width of the vertical fracture is about 53 m. Combined with the actual situation of the mine, it is suggested that the final hole of the high borehole is arranged from 20 m to 35 m perpendicular to the roof of the coal seam, and 15 m to 30 m from the wall of the coal shaft in the horizontal direction.
-
-
[1] 谢和平,陈忠辉,王家臣.放顶煤开采巷道裂隙的分形研究[J].煤炭学报,1998,23(3):252-257. [2] 谢和平,张泽天,高峰,等.不同开采方式下煤岩应力场-裂隙场-渗流场行为研究[J].煤炭学报,2016,41(10):2405-2417. [3] 袁亮.低透高瓦斯煤层群安全开采关键技术研究[J].岩石力学与工程学报,2008,27(7):1370-1379. [4] 袁亮.卸压开采抽采瓦斯理论及煤与瓦斯共采技术体系[J].煤炭学报,2009,34(1):1-8. [5] 袁亮,郭华,沈宝堂,等.低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J].煤炭学报,2011,36(3):357-365. [6] 刘洪永,程远平,陈海栋,等.高强度开采覆岩离层瓦斯通道特征及瓦斯渗流特性研究[J].煤炭学报,2012,37(9):1437-1443. [7] 王旭锋,张东升,李国君,等.铁法矿区高瓦斯低透气性煤层群卸压煤层气抽采钻孔布置[J].煤炭学报,2011,36(8):1296-1301. [8] 张勇,许力峰,刘珂铭,等.采动煤岩体瓦斯通道形成机制及演化规律[J].煤炭学报,2012,37(9):1444. [9] 薛东杰,周宏伟,唐咸力,等.采动煤岩体瓦斯渗透率分布规律与演化过程[J].煤炭学报,2013,38(6):930-935. [10] 李宏艳,王维华,齐庆新,等.基于分形理论的采动裂隙时空演化规律研究[J].煤炭学报,2014,39(6):1023-1030. [11] 马念杰,李季,赵希栋,等.深部煤与瓦斯共采中的优质瓦斯通道及其构建方法[J].煤炭学报,2015,40(4):742-748. [12] Zhao Zhiqiang, Ma Nianjie, Jia Housheng. Partitioning characteristics of gas channel of coal-rock mass in mining space and gas orientation method[J]. International Journal of Mining Science and Technology, 2013, 23(4): 873-877. [13] 刘超,李树刚,薛俊华,等.基于微震监测的采空区覆岩高位裂隙体识别方法[J].中国矿业大学学报,2016,45(4):709-716. [14] 孔令海,李峰,欧阳振华,等.采动覆岩裂隙分布特征的微震监测研究[J].煤炭科学技术,2016,44(1):109-113. [15] 太原理工矿山设计研究所.2#煤层及其顶底板岩石物理力学性质试验报告[R].太原,2016.
计量
- 文章访问数: 82
- HTML全文浏览量: 0
- PDF下载量: 0