• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

建筑物及承压水下大采深开采安全性研究

余学义, 马立东, 毛旭魏

余学义, 马立东, 毛旭魏. 建筑物及承压水下大采深开采安全性研究[J]. 煤矿安全, 2019, 50(10): 172-176,180.
引用本文: 余学义, 马立东, 毛旭魏. 建筑物及承压水下大采深开采安全性研究[J]. 煤矿安全, 2019, 50(10): 172-176,180.
YU Xueyi, MA Lidong, MAO Xuwei. Research on Safety with Large Mining Depth Under Buildings and Confined Water[J]. Safety in Coal Mines, 2019, 50(10): 172-176,180.
Citation: YU Xueyi, MA Lidong, MAO Xuwei. Research on Safety with Large Mining Depth Under Buildings and Confined Water[J]. Safety in Coal Mines, 2019, 50(10): 172-176,180.

建筑物及承压水下大采深开采安全性研究

Research on Safety with Large Mining Depth Under Buildings and Confined Water

  • 摘要: 为了研究建筑物及承压水下大采深安全开采可行性,依托高家堡煤矿的地质采矿条件,理论计算得出条带开采参数。应用岩层承载能力和岩层破断距确定关键层与含水层的相对位置关系,建立数学模型,提出开采宽度影响关键层稳定性的判断准则。进一步对该矿工作面开采后关键层及煤柱稳定性进行理论分析,采用FLAC3D模拟计算设计条带参数。结果表明:在建筑物及承压水下大采深开采,理论计算得出开采宽度未影响主关键层稳定性,留设煤柱稳定性良好,模拟出裂采比为18,地表最终呈单一平缓下沉盆地,满足建筑物及承压水体下安全开采的要求,对解决初期矿井接续紧张和保障安全生产至关重要。
    Abstract: In order to study the feasibility of safe mining under the buildings and the large depth of mining under pressure, relying on the geological mining conditions of Gaojiapu Coal Mine, the strip mining parameters were theoretically calculated. We apply the bearing capacity of rock stratum and breaking distance of rock stratum to determine the relative position relationship between key layer and aquifer, establish a mathematical model, and propose the criterion for determining the stability of key layer affected by mining width. Further theoretical analysis of the key layer and coal pillar stability after mining face mining is carried out, and the strip parameters are calculated by FLAC3D simulation. The results show that under the buildings and confined water with deep mining, the theoretical calculation shows that the mining width does not affect the stability of the main key layer; the stability of the retained coal pillar is good, the simulated crack mining ratio is 18, and the surface is finally flat. The sinking basin meets the requirements for safe mining under buildings and confined water, and is crucial to solve the initial tightness of mines and ensure safe production.
  • [1] 陈杰,李青松.建筑物、水体下采煤技术现状[J].煤炭技术,2010,29(12):76-78.
    [2] 胡社荣,彭纪超,黄灿,等.千米以上深矿井开采研究现状与进展[J].中国矿业,2011,20(7):105-111.
    [3] 谢和平,高峰,鞠杨.深部岩体力学研究与探索[J].岩石力学与工程学报,2015,34(11):2162-2175.
    [4] 徐乃忠,王斌,祁永川.深部开采的地表沉陷预测研究[J].采矿与安全工程学报,2006,23(1):66-69.
    [5] 余学义,雷武林,高治洲,等.建筑物下宽条带开采方案研究[J].煤炭工程,2013(4):9-15.
    [6] 许家林,朱卫兵,王晓振.基于关键层位置的导水裂隙带高度预计方法[J].煤炭学报,2012,37(5):762.
    [7] 余学义,张恩强.开采损害学[M].北京:煤炭工业出版社,2010.
    [8] WILSON A H. An hypothesis concerning pillar stability[J]. Mining Engineer, 1972, 131: 409-417.
    [9] 钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003:184-185.
    [10] 孙亚军,张梦飞,高尚,等.典型高强度开采矿区保水采煤关键技术与实践[J].煤炭学报,2017,42(1):56-65.
    [11] 于洋,邓喀中,范洪冬.条带开采煤柱长期稳定性评价及煤柱设计方法[J].煤炭学报,2017,42(12):3089-3095.
计量
  • 文章访问数:  67
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 发布日期:  2019-10-19

目录

    /

    返回文章
    返回