铁路下煤矿超高水充填开采地表沉陷研究
Surface Subsidence of High Water Filling Mining in Coal Mine Under Railway
-
摘要: 随着国家铁路网的不断延伸,铁路线下压煤量日益增多,为在保障铁路运营安全的前提下更好的回收煤炭资源,应用FLAC3D数值模拟、概率积分法预测及现场实测相结合,研究铁路下超高水充填开采技术对地表铁路运营的影响,通过设置不同的回采方案,应用FLAC3D数值模拟对比不同充填率、不同工作面布置情况下,开采活动对地表沉降量的影响程度。煤矿现场工作面实际宽度为100 m,超高水充填率为94%,通过概率积分法预测地表的最大下沉量为73 mm;地面观测站观测结果65 mm,均与FLAC3D数值模拟充填率95%结果极为接近,且根据铁路建设的相关规定,地表下沉量符合铁路安全通行的要求,超高水充填环保、经济、有效。Abstract: With the continuous extension of the national railway network, the amount of coal under railway line is increasing. To recover coal resources better on the premise of ensuring the safety of railway operation, FLAC3D numerical simulation, probability integral method prediction and field measurement are combined to study the impact of filling mining technology under railway super-high water on surface railway operation. By setting different mining schemes, FLAC3D numerical value is applied. The influence of mining activities on surface subsidence is simulated and compared under different filling rates and different working face layouts. The actual width of coal mine working face is 100 m, the filling rate of super-high water is 94%, and the maximum surface subsidence is predicted by probability integral method to be 73 mm; the observation result of ground observation station is 65 mm, which is very close to the filling rate of FLAC3D numerical simulation of 95%. According to the relevant regulations of railway construction, the surface subsidence meets the requirements of safe passage of railway, and the filling of super high water meets the requirements of environmental protection, economy and effectiveness
-
-
[1] 赵军,查剑锋,李怀展.矿区铁路下采煤优化设计的数值计算方法[J].煤炭工程,2014,46(8):15-18. [2] 瑞峰,刘景明.我国充填开采技术发展现状[J].煤矿机械,2018,39(5):8-9. [3] 秦大健.超高水材料空巷充填技术的研究与应用[J].煤炭与化工,2018,41(9):17-19. [4] 李幸丽.超高水充填开采地表沉陷分析[J].煤炭技术,2014,33(11):306-308. [5] 孙春东,刘树轮,李继升.超高水材料在煤矿的系列应用技术[J].煤炭科学技术,2017,45(8):42-47. [6] 陈亮,陈上元,杜斌斌.煤矿超高水袋式充填及沿空留巷技术[J].煤矿安全,2015,46(8):58-60. [7] 冯光明,贾凯军,尚宝宝.超高水充填材料在采矿工程中的应用与展望[J].煤炭科学技术,2015,43(1):5. [8] 黄启明,冯星宇,曾朝辰,等.老城区建筑物下超高水材料充填开采技术应用[J].煤炭工程,2014,46(4):55-56. [9] 娄高中,郭文兵.薄煤层超高水充填开采与地表沉陷研究[J].中国安全科学学报,2015,25(4):110-115. [10] 钱鸣高,缪协兴,许家林.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003. [11] 陈亮,陈上元,杜斌斌.煤矿超高水袋式充填及沿空留巷技术[J].煤矿安全,2015,46(8):58-60. [12] 何树超.超高水材料充填体长期稳定性监测研究与实践[J].山东煤炭科技,2017(3):158-160. [13] 温成龙.老采空区超高水材料注浆减沉效果及预警研究[D].邯郸:河北工程大学,2016. [14] 潘仕洪.义能煤矿超高水材料“采—充—留”充填开采技术研究与应用[D].徐州:中国矿业大学,2016. [15] 张新国,江兴元,江宁.田庄煤矿超高水材料充填开采技术的研究及应用[J].矿业研究与开发,2012,32(6):35-39. [16] TB 10035—2018铁路特殊土路基设计规范[S]. -
期刊类型引用(2)
1. 闵玉,赵永满,鲁浩男,周雪. 基于组合赋权-VIKOR法的农机企业车间布局研究. 南方农机. 2022(11): 10-15 . 百度学术
2. 韩玮玮,李永安. VIKOR法在既有建筑节能改造中的应用. 低温建筑技术. 2021(11): 26-30 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 132
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 4