• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

深厚冲积层冻结壁井帮位移发展研究

刘民东, 孙冠东, 陈新明

刘民东, 孙冠东, 陈新明. 深厚冲积层冻结壁井帮位移发展研究[J]. 煤矿安全, 2019, 50(8): 203-208.
引用本文: 刘民东, 孙冠东, 陈新明. 深厚冲积层冻结壁井帮位移发展研究[J]. 煤矿安全, 2019, 50(8): 203-208.
LIU Mindong, SUN Guandong, CHEN Xinming. Study on Displacement Development of Deep Alluvial Frozen Well Wall[J]. Safety in Coal Mines, 2019, 50(8): 203-208.
Citation: LIU Mindong, SUN Guandong, CHEN Xinming. Study on Displacement Development of Deep Alluvial Frozen Well Wall[J]. Safety in Coal Mines, 2019, 50(8): 203-208.

深厚冲积层冻结壁井帮位移发展研究

Study on Displacement Development of Deep Alluvial Frozen Well Wall

  • 摘要: 冻结壁井帮位移是井筒冻结法施工过程中的重要问题,井帮位移的大小直接影响冻结壁的稳定性,过大的井帮位移甚至会引起冻结管的断裂,从而影响整体施工安全。为了进一步研究井帮位移,借助COMSOL Multiphysics数值模拟软件,考虑地层压力、冻结壁温度、冻土物理参数、力学参数等因素,模拟井筒开挖过程中井帮位移,并结合现场实测数据进行对比。结果显示:在1个开挖的段高中,井帮位移发展前期较大,中期平稳,后期基本无变化;最佳开挖段高为4 m,6 h模拟位移值的井帮位移为32.94 mm,略大于实测的27 mm;模拟结果与实际情况符合程度良好。
    Abstract: The frozen well wall displacement is an important problem in the construction process of the wellbore freezing method. The size of the well wall displacement directly affects the stability of the frozen wall. Excessive well wall displacement can even cause the freezing tube to break, thus affecting the overall construction safety. To further study the displacement of the well wall, the parameters of formation pressure, frozen wall temperature, physical parameters of frozen soil, mechanical parameters and other factors were used to simulate the well wall displacement during the excavation process with COMSOL Multiphysics numerical simulation software, and compare with the field measured data. The results show that in the high section of one excavation, the development of well wall displacement is relatively large in the early stage, stable in the medium term, and there is basically no change in the later stage. The optimum excavation height is 4 m, and the displacement of the well displacement of 6 h simulated displacement is 32.94 mm, more than the measured 27 mm; the simulation results are in good agreement with the actual situation.
  • [1] 李运来,汪仁和,姚兆明.深厚表土层冻结法凿井井壁冻结压力特征分析[J].煤炭工程,2006(10):35-37.
    [2] Winkler E M. Frost damage to stone and concrete: geological considerations[J]. Engineering Geology, 1968, 2(5): 315-323.
    [3] 汪鹏程,杨俊杰,朱向荣.用有限元法探讨冻结井井壁上融沉负摩擦力性状[J].矿冶工程,2003,23(5):1-4.
    [4] 王衍森,程建平,薛利兵,等.冻结法凿井冻结壁内外部冻胀力的工程实测及分析[J].中国矿业大学学报,2009,38(3):303-308.
    [5] 杜圣.侏罗系地层冻结壁与井壁相互作用规律研究[D].淮南:安徽理工大学,2012.
    [6] 范存辉.不同冻结形式下斜井冻结壁变形规律研究[D].徐州:中国矿业大学,2014.
    [7] 黄俐,宋常军.深埋黏土层冻结壁厚度的有限段高计算模型研究[J].煤炭工程,2016,48(6):54-57.
    [8] 任建喜,孙杰龙,张琨,等.富水砂层斜井冻结壁力学特性及温度场研究[J].岩土力学,2017,38(5):1405.
    [9] 盛天宝.特厚黏土层冻结压力研究与应用[J].煤炭学报,2010,35(4):571-574.
计量
  • 文章访问数:  98
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 发布日期:  2019-08-19

目录

    /

    返回文章
    返回