富水断层破碎带对隧道围岩稳定性的影响
Influence of Water-rich Fault Fracture Zone on Stability of Tunnel Surrounding Rock
-
摘要: 为研究富水断层破碎带对隧道围岩稳定性的影响,以吉莲高速公路永莲隧道工程为背景,对其穿越断层破碎带的一段区域进行变形破坏数值模拟研究,并在此基础上,分析了断层破碎带厚度、倾角以及水头压力对围岩变形的影响。研究结果表明:随着隧道向前推进,掘进工作面岩体位移将在与破碎带间隔距离为9 m时开始呈“瀑布式”增长,而掘进工作面前方岩体松动圈则会在间隔距离6 m时与断层破碎带松动区相连,出现导水裂隙通道,引发突水灾害;隧道掘进工作面靠近破碎带时,其最大纵向位移与破碎带厚度关系不大,而与破碎带倾角和水头压力分别呈指数衰减和线性关系;隧道在破碎带内开挖产生的最大位移分别与破碎带厚度、倾角以及水头压力呈指数衰减、抛物线和线性关系。Abstract: To study the influence of the water-rich fault fracture zone on the stability of the surrounding rock of the tunnel, this paper takes Yonglian Tunnel Project of Jilian expressway as the background. Based on the numerical simulation results of deformation and failure of a section passing through a fault fracture zone, the influence of thickness, inclination angle and head pressure of fault fracture zone on the deformation of tunnel surrounding rock is analyzed. The results show that: the rock displacement of tunnel face will begin to grow at a distance of 9 m from the fracture zone as the tunnel advances. When the separation distance is 6 m, the loose rock ring in front of the tunnel face will be connected with the loose zone of fault fracture zone, and a water-conducting fissure channel will appear to cause a water inrush disaster. When the tunnel face is close to the fracture zone, its maximum longitudinal displacement has little relationship with the thickness of the fracture zone, and it has an exponential decay and linear relationship with the inclination and head pressure of the fracture zone respectively. The maximum displacement of the tunnel in the fracture zone is exponentially decayed, parabolic and linear with the thickness, inclination and head pressure of the fracture zone.
-
-
[1] 徐钟,邓辉,邓书金,等.岩溶隧道涌突水形成机制及岩壁安全厚度研究[J].人民长江,2018,49(3):61. [2] 邢军,董小波,贺晓宁.断层破碎带内隧道施工围岩稳定性分析[J].灾害学,2018,33(S1):164-168. [3] 宋娅芬,陈从新,郑允,等.缓倾软硬岩互层边坡变形破坏机制模型试验研究[J].岩土力学,2015,36(2):487-494. [4] 周匡心.青铜峡工程断层破碎带的处理[J].水利水电技术,1960(3):7-11. [5] 冶金部矿冶研究所.用抗滑桩加固露天矿边坡断层破碎带[J].金属矿山,1974(5):19-24. [6] 李世熙,孙慧.用有限元计算研究葛洲坝大江厂房砾岩地段断层破碎带处理[J].人民长江,1985(2):44. [7] 彭传业.回采工作面破碎带处的矿压特点与支护[J].煤矿安全,1986(9):23-25. [8] 张兴文,乔春生.秦岭隧道穿越fq7断层破碎带的三维仿真模拟[J].铁道工程学报,1997(2):130-136. [9] 聂振平.富水浅埋隧道断层破碎带拱顶下沉处理技术[J].西部探矿工程,2003(10):77-79. [10] 吴海之.大瑶山1#隧道高压富水岩溶破碎带施工技术[J].铁道工程学报,2007(S1):393-398. [11] 包德勇.高压富水隧道断层破碎带突涌水分析与工程对策[J].现代隧道技术,2012,49(5):123-127. [12] 李廷春,吕连勋,段会玲,等.深埋隧道穿越富水破碎带围岩突水机理[J].中南大学学报(自然科学版),2016,47(10):3469-3476. [13] 胡义新,陈培帅.小净距隧道富水破碎带突水灾变演化规律与防治技术[J].公路,2016,61(7):325-329. [14] 王猛,苏卫强,吕苑,等.加固措施对富水断层破碎带隧洞围岩稳定的影响研究[J].水利与建筑工程学报,2018,16(2):200-204. [15] 王德明.泥质断层破碎带隧道突水突泥灾变机理研究及应用[D].济南:山东大学,2017.
计量
- 文章访问数: 130
- HTML全文浏览量: 1
- PDF下载量: 0