• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

水力压裂控制坚硬顶板室内试验及现场测试

段宏飞, 杨强

段宏飞, 杨强. 水力压裂控制坚硬顶板室内试验及现场测试[J]. 煤矿安全, 2019, 50(7): 26-30.
引用本文: 段宏飞, 杨强. 水力压裂控制坚硬顶板室内试验及现场测试[J]. 煤矿安全, 2019, 50(7): 26-30.
DUAN Hongfei, YANG Qiang. Lab Experiment and Field Test of Hydraulic Fracturing in Controlling Hard Roof[J]. Safety in Coal Mines, 2019, 50(7): 26-30.
Citation: DUAN Hongfei, YANG Qiang. Lab Experiment and Field Test of Hydraulic Fracturing in Controlling Hard Roof[J]. Safety in Coal Mines, 2019, 50(7): 26-30.

水力压裂控制坚硬顶板室内试验及现场测试

Lab Experiment and Field Test of Hydraulic Fracturing in Controlling Hard Roof

  • 摘要: 为了获得坚硬顶板在水力压裂作用下的裂缝扩展规律,采用室内试验研究了不同的预制横向切槽参数和泵注速率作用下的压裂效果。室内试验结果表明:预制横向切槽可有效的降低水力裂缝的起裂压力,较长的切槽长度与合适的切槽角度可使水力裂纹有更平滑的转向路径,从而改善近井筒区域裂缝复杂性。此外,对水力压裂的影响范围及效果进行了现场试验。现场试验结果表明:水力裂纹的扩展范围在30~50 m间,处理后的顶板无明显冲击性来压。随工作面推进顶板能及时跨落,说明水力压裂能有效控制坚硬顶板。
    Abstract: To obtain the crack growth law of hard roof under hydraulic fracturing, laboratory experiments were used to study the fracturing effect under the effect of different prefabricated transverse grooving parameters and pump injection rate. The experiments result shows: prefabricated transverse grooving can effectively reduce the initiation pressure, and longer grooving length and appropriate grooving angle may result in a smoother reorientation path for hydraulic fracture, thus improving the near-wellbore complexity. Besides, field experiments are also conducted to test the influence range and treatment effect. The result of field experiments shows: the propagation of hydraulic fractures ranges from 30 m to 50 m and no obvious impact pressure occurs after treatment. The roof fragments can also drop freely with the advancing of working face, which shows that hydraulic fracturing can effectively control the hard roof.
  • [1] 冯彦军,康红普.定向水力压裂控制煤矿坚硬难垮顶板试验[J].岩石力学与工程学报,2012,31(6):1148.
    [2] 赵阳升,万志军,康建荣.高温岩体地热开发导论[M].北京:科学出版社,2004.
    [3] Ellsworth W L. Injection-induced earthquakes[J]. Science, 2013, 341: 142-148.
    [4] 黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析[J].岩石力学与工程学报,2000,19(5):573-576.
    [5] 侯明勋,葛修润,王水林.水力压裂法地应力测量中的几个问题[J].岩土力学,2003,24(5):840-844.
    [6] 唐书恒,朱宝存,颜志丰.地应力对煤层气井水力压裂裂缝发育的影响[J].煤炭学报,2011,36(1):65-69.
    [7] 孙守山,宁宇,葛钧.波兰煤矿坚硬顶板定向水力压裂技术[J].煤炭科学技术,1999,27(2):51-52.
    [8] 赵阳升,杨栋,胡耀青.低渗透煤储层煤层气开采有效技术途径的研究[J].煤炭学报,2001,26(5):455.
    [9] Wang L, Liu J, Pei J, et al. Mechanical and permeability characteristics of rock under hydro-mechanical coupling conditions[J]. Environmental Earth Sciences,2015, 73(10): 5987-5996.
    [10] Warpinski N R, Teufel L W. Influence of geologic discontinuities on hydraulic fracture propagation (includes associated papers 17011 and 17074)[J]. Journal of Petroleum Technology, 1987, 39(2): 209-220.
    [11] 闫少宏,宁宇,康立军,等.用水力压裂处理坚硬顶板的机制及试验研究[J].煤炭学报,2000,25(1):32.
    [12] 邓广哲,王世斌,黄炳香.煤岩水压裂缝扩展行为特性研究[J].岩石力学与工程学报,2004,23(20):3489-3493.
    [13] 黄炳香,程庆迎,刘长友,等.煤岩体水力致裂理论及其工艺技术框架[J].采矿与安全工程学报,2011,28(2):167-173.
    [14] 于斌,段宏飞.特厚煤层高强度综放开采水力压裂顶板控制技术研究[J].岩石力学与工程学报,2014,33(4):778-785.
    [15] Zhou J, Chen M, Jin Y, et al. Analysis of fracture propagation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(7): 1143-1152.
    [16] Sarris E, Papanastasiou P. The influence of pumping parameters in fluid-driven fractures in weak porous formations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(6): 635-654.
  • 期刊类型引用(5)

    1. 张超林,刘明亮,王恩元,王培仲,姜巧真,曾伟. 煤层渗透性对煤与瓦斯突出的影响规律及控制机理. 煤炭学报. 2024(12): 4842-4854 . 百度学术
    2. 李冰,刘见宝,任建刚,陈锋,宋志敏. 水力冲孔对煤微观孔隙和结构成分影响的试验研究. 煤炭科学技术. 2021(08): 131-138 . 百度学术
    3. 周云飞,孟秀峰,赵庆珍,王金策,翟志伟,黄少青. 回采工作面瓦斯运移数值模拟及预警模型. 煤炭技术. 2021(12): 126-129 . 百度学术
    4. 王伟,陈培红,刘德成. 陈四楼煤矿煤与瓦斯突出原因及防治措施研究. 煤矿安全. 2021(12): 177-182 . 本站查看
    5. 崔峥. 断层对矿井煤与瓦斯突出的影响分析. 山西焦煤科技. 2020(03): 14-16 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  114
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 12
出版历程
  • 发布日期:  2019-07-19

目录

    /

    返回文章
    返回