• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

煤体瓦斯运移的容阻效应分析

刘永茜

刘永茜. 煤体瓦斯运移的容阻效应分析[J]. 煤矿安全, 2019, 50(7): 5-9,13.
引用本文: 刘永茜. 煤体瓦斯运移的容阻效应分析[J]. 煤矿安全, 2019, 50(7): 5-9,13.
LIU Yongqian. Capacitive Resistance Effect Analysis of Gas Migration in Coal[J]. Safety in Coal Mines, 2019, 50(7): 5-9,13.
Citation: LIU Yongqian. Capacitive Resistance Effect Analysis of Gas Migration in Coal[J]. Safety in Coal Mines, 2019, 50(7): 5-9,13.

煤体瓦斯运移的容阻效应分析

Capacitive Resistance Effect Analysis of Gas Migration in Coal

  • 摘要: 通过对多孔介质吸附-渗流理论及实验分析,提出了对煤体瓦斯运移规律的新认识。研究结果发现:煤体结构对瓦斯运移具有容阻效应,“容储”、“阻力”二重特性并存构成了煤基质瓦斯运移的基本功能;瓦斯运移过程中的吸附特性差异体现在吸附响应时间、吸附速率增长速度、吸附平衡时间和最大吸附能力4项指标;瓦斯运移过程中扩散和渗流2种方式并存,当裂隙及大孔内瓦斯压力较中-微孔隙系统瓦斯压力高时,煤体内瓦斯运移以渗流为主,否则以扩散为主;煤体裂隙越发育,煤体对瓦斯压降变化越敏感,瓦斯解吸效率越高。
    Abstract: Based on the theoretical analysis of gas adsorption and gas seepage in porous media, some new opinions on the law of gas migration in coal seam were proposed with experimental analysis. The results show that, for the gas in migration, coal structure has the storage-resistance effect, the dual functions of gas charging effect and gas hindering effect form the basic feature of coal matrix; adsorption reaction time, adsorption growth rate, adsorption equilibrium time and the maximum adsorption capacity are 4 key adsorption indexes between the coal samples; diffusion and seepage are two ways of gas migration in coal seam. When the gas pressure in the fractures or the large holes are higher than the gas pressure in the micro-nano-pore system, the gas migration velocity is dominated by gas seepage, otherwise, gas diffusion would be the main factor; the more developed the fracture, the more sensitive the coal body to the change of gas pressure drop, and the higher the gas desorption efficiency.
  • [1] 张新民,张遂安,钟铃文,等.中国的煤层甲烷[M].西安:陕西科学技术出版社,1991.
    [2] 秦勇,傅雪海,叶建平,等.中国煤储层岩石物理学因素控气特征及机理[J].中国矿业大学学报,1999,28(1):14-19.
    [3] 刘永茜,侯金玲,张浪,等.孔隙结构控制下的煤体渗透实验研究[J].煤炭学报,2016,41(S2):434-440.
    [4] 琚宜文,姜波,王桂梁,等.构造煤结构及储层物性[M].徐州:中国矿业大学出版社,2005.
    [5] 姜波,琚宜文.构造煤结构及其储层物性特征[J].天然气工业,2004,24(5):27-29.
    [6] 秦跃平,王健,郑赟,等.煤粒瓦斯变压吸附数学模型及数值解算[J].煤炭学报,2017,42(4):923-928.
    [7] 张志刚,程波.含瓦斯煤体非线性渗流模型[J].中国矿业大学学报,2015,44(3):453-459.
    [8] 魏建平,王洪磊,王登科,等.考虑渗流-扩散的煤层瓦斯流动修正模型[J].中国矿业大学学报,2016,45(5):873-878.
    [9] 刘永茜,张玉贵,张浪.煤层瓦斯运移机制的关键参数表征[J].岩石力学与工程学报,2017,36(5):1145.
    [10] 霍多特BB,宋世钊,王佑安,等.煤与瓦斯突出[M].北京:中国工业出版社,1966.
    [11] 许江,袁梅,李波波,等.煤的变质程度、孔隙特征与渗透率关系的试验研究[J].岩石力学与工程学报,2012,31(4):681-687.
    [12] J H de Boer.The shape of capillaries [M].London:Butterworths Scientific Publication, 1958: 68-94.
    [13] 刘永茜,张浪,李浩荡,等.含水率对煤层气渗流的影响[J].煤炭学报,2014,39(9):1840-1844.
    [14] 张东明,齐消寒,宋润权,等.采动裂隙煤岩体应力与瓦斯流动的耦合机理[J].煤炭学报,2015,40(4):774-780.
    [15] 张遂安.有关煤层气勘探过程中的理论误导剖析[J].中国煤层气,2004,1(2):7-8.
    [16] 张松航,汤达祯,唐书恒,等.鄂尔多斯盆地东缘煤层气储集与产出条件[J].煤炭学报,2009,34(10):1297-1304.
    [17] 姜德义,袁曦,陈结,等.吸附气体对突出煤渗流特性的影响[J].煤炭学报,2015,40(9):2091-2096.
    [18] 周动,王辰,冯增朝,等.煤吸附解吸甲烷细观结构变形试验研究[J].煤炭学报,2016,41(9):2238-2245.
    [19] 侯泉林,雒毅,韩雨贞,等.煤的变形产气机理探讨[J].地质通报,2014,33(5):715-722.
    [20] 葛家理.现代油藏渗流力学原理[M].北京:石油工业出版社,2006.
计量
  • 文章访问数:  106
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 发布日期:  2019-07-19

目录

    /

    返回文章
    返回